Tống các hệ số khi khai triển (x^2-4x+2)^2016
tính tổng hệ số các hạng tử của đa thức nhận được sau khi đã khai triển và thu gọn
(x^4+4x^2-5x+1)^2016 . ( 2x^4-4x^2+4x-1)^2017
tổng các hệ số là giá trị của f(x) khi x=1. VD: f(x)=2x^2+3x-1 suy ra tổng các hệ số là f(1)=2.1^2+3*1-1=4
tương tự bài kia ta có tổng các hệ số là 1
Tính tổng các hệ số của đa thức sau sau khi khai triển và thu gọn.
P(x)=(x^4 + 4x^2 - 5x + 1)*2014*2015*(2x^4 - 4x^2 + 4x -1)
Tính tổng các hệ số của các hạng tử của đa thức nhận được sau khi đã khai triển và viết đa thức P(x) dưới dạng thu gọn, biết P(x) = (12x2 - 18x + 5)2016.
Giả sử ta có : A(x) = 3x + 67 ; B(y) = y2 - 11 + 2y3
Thì : A(1) = 3.1 + 67 = 70
B(1) = 12 - 11 + 2.13 = - 8
Vậy thì tổng các hệ số của hạng tử trong đa thức chính là tổng các hạng tử của đa thức có biến là 1 .
Sau đó thì bạn thay 1 vào P(x) rồi tìm được kết quả là 1
Cái chính là hiểu bạn chất vấn đề , còn chỗ giả sử kia không phải ghi vào vở đâu nhé !
Chúc bạn học chăm !!!
Cảm ơn Chi Thảo
Cảm ơn Chi Thảo
Cảm ơn Chi Thảo
tính tổng các hệ số của các hạng tử của đa thức nhận được sau khi đã khai triển và viết đa thức P(x) dưới dạng thu gọn, biết P(x) = (12x2 - 18x + 5)2016
cho đa thức f(x)=(2x^5+3x-4)^2016-(x^7+x^8)^5. Tổng các hệ số của f(x) sau khi khai triển và rút gọn là boa nhiêu?
Tính tổng các hệ số của các hạng tử của đa thức nhận được sau khi đã triển khai và viết đa thức dưới dạng thu gọn
(x4+4x2-5x+1)2017.(2x4-4x2+4x-1)2018
Đặt \(A\left(x\right)=\left(x^4+4x^2-5x+1\right)^{2017}.\left(2x^4-4x^2+4x-1\right)^{2018}\)
Gọi đa thức A(x) sau khi bỏ dấu ngoặc là :
\(A\left(x\right)=a_{32280}x^{32280}+a_{32279}x^{32279}+....+a_1x+a_0\)
Ta thấy tổng giá trị các hệ số của đa thức \(a_{32280}+a_{32279}+...+a_1+a_0\)chính là giá trị của đa thức tại \(x=1\)
Ta có \(A\left(1\right)=\left(1^4+4.1^2-5.1+1\right)^{2017}.\left(2.1^4-4.1^2+4.1-1\right)^{2018}=0\)
Vì \(A\left(1\right)=0\)nên \(a_{32280}+a_{32279}+...+a_1+a_0=0\)
Vậy tổng các hệ số của đa thức sau khi bỏ dấu ngoặc bằng 0
Tính tổng các hệ số khi khai triển đa thức P(x) = (x^3 − 2x^2 + 2)^2018 .
Tổng các hệ số phi khai triển đa thức \(P\left(x\right)\)là \(P\left(1\right)\).
\(P\left(1\right)=\left(1^3-2.1^2+2\right)^{2018}=1^{2018}=1\)
Cho khai triển: \(\left(x^2+4x^3+4x^2\right)^{60}\)
a) Tìm số hạng không chứ x trong khai triển.
b) Tìm tổng hệ số của số hạng thứ 4 và số hạng thứ 8.
Cho đa thức
A(x)=(x^4+4x^2-5x+1)1994
Tính tổng các hệ số của các hạng tử của đa thức nhận được sau khi đã khai triển và viết đa thức dưới dạng thu gọn