Chứng minh biểu thức là số nguyên tố :
2. a2 - 2.ab a2 - 2 . a -3
Cho a và b là 2 số nguyên tố cùng nhau .chứng minh rằng các số sau cũng là hai số nguyên tố cùng nhau a)a và a+b b)a2 và a+b c)ab và a+b
Cho a và b là 2 số nguyên tố cùng nhau .chứng minh rằng các số sau cũng là hai số nguyên tố cùng nhau
a)a và a+b
b)a2 và a+b
c)ab và a+b
b,giả sử (a2;a+b) khác 1
gọi d là ƯCNT của a2;a+b
=>a2 chia hết cho d=>a chia hết cho d
a+b chia hết cho d=>b chia hết cho d
=>(a;b)>1 trái GT
=>(a2;a+b)=1
=>đpcm
c,
,giả sử (ab;a+b) khác 1
gọi d là ƯCNT của ab;a+b
ab chia hết cho d=>a hoặc b chia hết cho d
1 trong 2 số a;b chia hết cho d
mà a+b chia hết cho d
=>số còn lại chia hết cho d
=>(a;b)>1 trái GT
=>(ab;a+b)=1
=>đpcm
Thành ơi, ai nói: a2 chia hết cho d=> a chia hết cho d. Nếu thế thì làm ra từ lâu rồi. VD: 42=16 chia hết cho 8 mà 4 không chia hết cho 8
Cho a và b là 2 số nguyên tố cùng nhau .chứng minh rằng các số sau cũng là hai số nguyên tố cùng nhau
a)a và a+b
b)a2 và a+b
c)ab và a+b
Cho a và b là 2 số nguyên tố cùng nhau .chứng minh rằng các số sau cũng là hai số nguyên tố cùng nhau
a)a và a+b
b)a2 và a+b
c)ab và a+b
a)Gọi ƯCLN(a,a+b)=d
=>a chia hết cho d
a+b chia hết cho d
=>a+b-a chia hết cho d
=>b chia hết cho d
=>d=ƯC(a,b)
Vì a và b nguyên tố cùng nhau
=>d=ƯC(a,b)=1
=>ƯCLN(a,a+b)=1
=>a và a+b là nguyên tố cùng nhau
=>ĐPCM
Cho a và b là 2 số nguyên tố cùng nhau .chứng minh rằng các số sau cũng là hai số nguyên tố cùng nhau
a)a và a+b
b)a2 và a+b
c)ab và a+b
Cho a và b là 2 số nguyên tố cùng nhau .chứng minh rằng các số sau cũng là hai số nguyên tố cùng nhau
a)a và a+b
b)a2 và a+b
c)ab và a+b
Xét các số nguyên dương a, b, c thỏa mãn a2 + ab - bc là số chính phương và a + b + c là số nguyên tố. Chứng minh rằng ac là số chính phương
Cho biểu thức 2 2 1 12 23 23 a a a aa A a, Rút gọn biểu thức b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tố
Câu 1. Chứng minh √7 là số vô tỉ.
Câu 2.
a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.
Câu 4.
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
ai nhanh nhất và đúng nhất sẽ cho tic đúng
1. Chứng minh là số vô tỉ.
2. a) Chứng minh : (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki : (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức : S = x2 + y2.
1)chứng minh cái j ???
2)\(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+2abcd+a^2d^2-2abcd+b^2c^2\)
\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b)Ta có:
\(\left(ab+cd\right)^2\le\left(a^2+c^2\right)\left(b^2+d^2\right)\)
\(\Leftrightarrow a^2b^2+c^2d^2+2abcd\le a^2b^2+a^2d^2+b^2c^2+c^2d^2\)
\(\Leftrightarrow a^2d^2+b^2c^2-2abcd\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)(Đpcm)
c)Áp dụng Bđt Bunhiacopxki ta có:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2=2^2=4\)
\(\Rightarrow2\left(x^2+y^2\right)\ge4\)
\(\Rightarrow x^2+y^2\ge2\)\(\Rightarrow S\ge2\)
Dấu = khi \(x=y=1\)