Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Kiệt
Xem chi tiết
VanCan
Xem chi tiết
Nguyễn Minh Quang
Xem chi tiết
nguyen the anh
Xem chi tiết
nguyen the anh
Xem chi tiết
Lê Tuấn Anh
Xem chi tiết
nguyen the anh
Xem chi tiết
Mr Lazy
15 tháng 4 2016 lúc 21:05

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)

\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Cô si: 

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+b}{8}\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(b+c\right)}.\frac{\left(a+b\right)}{8}.\frac{\left(b+c\right)}{8}}=\frac{3a}{4}\)

Tương tự với 2 cục còn lại, công theo vế:

\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\frac{a+b+c}{4}\text{ }\left(dpcm\right)\)

no
Xem chi tiết
zZ Tao Láo Nhưng Tao Khô...
24 tháng 1 2016 lúc 6:45

lấy bút xóa mà xóa hết là khỏe

Real Madrid
24 tháng 1 2016 lúc 7:02

\(botay.com.vn\)

no
24 tháng 1 2016 lúc 10:34

giai dum cai dang can gap

 

Dinh Thanh Tung
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 7 2020 lúc 21:28

\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)

\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)

\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)

\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)