Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Chi
Xem chi tiết
nợ mẹ ll một thằng ll rể
Xem chi tiết
Le Chi
Xem chi tiết
Ngô Huy Hoàng
Xem chi tiết
minh nguyen thi
Xem chi tiết
Nguyễn Nguyễn
Xem chi tiết
Thân Nhật Minh
Xem chi tiết
ST
8 tháng 11 2018 lúc 19:52

Đặt \(A=\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+cz\left(z-x\right)}\)

Từ ax+by+cz=0

=>(ax+by+cz)2=0

=>a2x2+b2y2+c2z2+2axby+2bycz+2czax=0

=>a2x2+b2y2+c2z2=-2(ax+by+byca+czax)

Xét mẫu thức: \(ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2\)

\(=ab\left(x^2-2xy+y^2\right)+bc\left(y^2-2yz+z^2\right)+ca\left(z^2-2zx+x^2\right)\)

\(=abx^2-2abxy+aby^2+bcy^2-2bcyz+bcz^2+caz^2-2cazx+cax^2\)

\(=\left(abx^2+bcz^2\right)+\left(aby^2+acz^2\right)+\left(acx^2+bcy^2\right)-2\left(abxy+bcyz+cazx\right)\)

\(=\left(aby^2+acz^2\right)+\left(abx^2+bcz^2\right)+\left(acx^2+bcy^2\right)+a^2x^2+b^2y^2+c^2z^2\)

\(=\left(a^2x^2+aby^2+acz^2\right)+\left(abx^2+b^2y^2+bcz^2\right)+\left(acx^2+bcy^2+c^2z^2\right)\)

\(=a\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+c\left(ax^2+by^2+cz^2\right)\)

\(=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)

Do đó: \(A=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{\frac{1}{2018}}=2018\) (dpcm)

zZz Nguyễn Việt Hà zZz
Xem chi tiết
Hoàng Phúc
Xem chi tiết
Phạm Tuấn Bách
30 tháng 1 2016 lúc 21:30

mình ko biết

Minh Triều
30 tháng 1 2016 lúc 21:30

cách của TĐT là cách nào ko thấy sao bik

Hoàng Phúc
30 tháng 1 2016 lúc 21:33

cách của TĐT: http://olm.vn/hoi-dap/question/390836.html