Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Minh Anh
Xem chi tiết
Đoàn Đức Hà
9 tháng 3 2021 lúc 17:16

\(n^2+5n+15⋮49\)

\(\Rightarrow n^2+5n+15⋮7\)

\(\Leftrightarrow n^2-2n+1=\left(n-1\right)^2⋮7\)

\(\Leftrightarrow n-1⋮7\)

\(\Leftrightarrow n=7k+1,k\inℕ\).

\(n^2+5n+15=\left(7k+1\right)^2+5\left(7k+1\right)+15\)

\(=49k^2+49k+6⋮̸49\).

Ta có đpcm. 

Khách vãng lai đã xóa
vu tien dat
Xem chi tiết
kevinbin
Xem chi tiết
Kiệt Nguyễn
11 tháng 8 2020 lúc 20:07

a) Ta có: \(n^2+7n+22=\left(n+2\right)\left(n+5\right)+12\)

*) Nếu \(n+2⋮3\)thì \(\left(n+2\right)+3⋮3\)hay \(n+5⋮3\)

\(\Rightarrow\left(n+2\right)\left(n+5\right)⋮9\)

Mà 12 không chia hết cho 9 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 9

*) Nếu n + 2 không chia hết cho 3 thì n + 5 không chia hết cho 3 suy ra \(\left(n+2\right)\left(n+5\right)\)không chia hết cho 3

Mà 12 chia hết cho 3 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 3 nên không chia hết cho 9

Vậy \(n^2+7n+22\)không chia hết cho 9 (đpcm)

b) \(n^2-5n-49=\left(n+4\right)\left(n-9\right)-13\)

*) Nếu \(n+4⋮13\)thì \(\left(n+4\right)-13⋮13\)hay \(n-9⋮13\)

\(\Rightarrow\left(n+4\right)\left(n-9\right)⋮169\)

Mà 13 không chia hết cho 169 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 169

*) Nếu n + 4 không chia hết cho 13 thì n - 9 không chia hết cho 13 suy ra \(\left(n+4\right)\left(n-9\right)\)không chia hết cho 13

Mà 13 chia hết cho 13 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 13 nên không chia hết cho 169

Vậy \(n^2-5n-49\)không chia hết cho 169 (đpcm)

Khách vãng lai đã xóa
FL.Hermit
11 tháng 8 2020 lúc 20:12

a) G/s phản chứng \(n^2+7n+22⋮9\)

=> \(n^2+4n+4+\left(3n+18\right)⋮9\)

=> \(\left(n+2\right)^2+3\left(n+6\right)⋮9\)

=> \(\left(n+2\right)^2+3\left(n+6\right)⋮3\)

=> \(\left(n+2\right)^2⋮3\)

=> \(\left(n+2\right)^2⋮9\)

Mà: \(\left(n+2\right)^2+\left(3n+18\right)⋮9\) 

=> \(3n⋮9\)

=> \(n⋮3\)

Nhưng khi đó thì: \(n^2+7n⋮3\)nhg 22 ko chia hết cho 3

=> \(n^2+7n+22\)không chia hết cho 3 => Ko thể chia hết cho 9

=> Điều giả sử là sai

=> TA CÓ ĐPCM

Khách vãng lai đã xóa
FL.Hermit
11 tháng 8 2020 lúc 20:19

b) Ta ttu g/s phản chứng \(n^2-5n-49⋮169\)

=> \(\left(n+4\right)^2-13n-65⋮13\)     (1)

Dễ thấy \(13n+65=13\left(n+5\right)⋮13\)

=> \(\left(n+4\right)^2⋮13\)

=> \(\left(n+4\right)^2⋮169\)(2)

TỪ (1) VÀ (2) THÌ: \(13\left(n+5\right)⋮169\)

=> \(n+5⋮13\)

=> \(n^2-25⋮13\)(3)

Và cx => \(5n+25⋮13\)(4)

(3); (4) => \(n^2-5n-50⋮13\)

=> \(n^2-5n-49-1⋮13\)

Mà: \(n^2-5n-49⋮13\)

=> \(1⋮13\)

NHG ĐÂY LÀ 1 ĐIỀU VÔ LÍ

=> ĐIỀU GIẢ SỬ LÀ SAI

=> TA CÓ ĐPCM.

Khách vãng lai đã xóa
Phạm Hạnh Nguyên
Xem chi tiết
Hoàng Nguyễn Văn
18 tháng 2 2018 lúc 17:24

giả sử A chia hết cho 49 => A chia hết 7 => (n+5)(n-2)+14 chia hết 7 mà 14 chia hết 7=>(n+5)(n-2) chia hết 7 mà 7 là số nguyên tố =>n+5 chia hết 7 hoặc n-2 chia hết cho 7 mà (n+5)-(n-2)=7 =>(n+5)(n-2) chia hết cho 49 mà A chia hết cho 49=>14 chia hết cho 49 (vô lý) => giả sử sai => a ko chia hết cho 49

Nguyễn Thái Anh
Xem chi tiết
Phạm Nhật Anh
Xem chi tiết
Trần Thị Loan
10 tháng 11 2015 lúc 23:21

a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25

Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5

Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5

Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k+ 55k) + 24 không chia hết cho 5

Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5

Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5

b,c tương tự:

Nguyễn Mai Hoa
Xem chi tiết
Bùi phương nga
Xem chi tiết
Nguyen Minh Tung
6 tháng 5 2015 lúc 19:55

Co ai bt man bai 5 

A B C ko

Nguyen Minh Tung
6 tháng 5 2015 lúc 20:50

day nay BPN

Giả sử n^2 + 5n +5 chia het cho 25 => n^2+5n+5 chia het cho 5 => n^2 chia het cho 5 (do 5n+5 chia het cho 5) 
Do đó n chia hết cho 5 (vì 5 là số ng tố) => n=5k (k thuoc N) => n^2+5n+5=25k^2+25k+5 
do 25k^2+25k chia het cho 25 nhưng 5 khong chia het cho 25 nen n^2+5n+5 không chia hết cho 25 
mâu thuẫn => điều g/s sai => dpcm

^^

Minh Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 12 2023 lúc 9:45

\(b=\left(n^2-n\right)\left(n+1\right)\)

\(=\left(n\cdot n-n\cdot1\right)\left(n+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\)

Vì n-1;n;n+1 là ba số nguyên liên tiếp

nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3!\)

=>b chia hết cho 6

\(c=5n^2+5n\)

\(=5n\cdot n+5n\cdot1\)

\(=5n\left(n+1\right)\)

n;n+1 là hai số nguyên liên tiếp

=>\(n\left(n+1\right)⋮2\)

=>\(c=5\cdot n\cdot\left(n+1\right)⋮5\cdot2=10\)