Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Cẩm Ly
Xem chi tiết
Nguyễn Phương Uyên
27 tháng 10 2018 lúc 21:43

\(S=3+3^2+3^3+...+3^{1998}\)

\(S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)

\(S=12+3^2\cdot\left(3+3^2\right)+...+3^{1996}\cdot\left(3+3^2\right)\)

\(S=12\cdot1+12\cdot3^2+...+12\cdot3^{1996}\)

\(S=12\cdot\left(1+3^2+...+3^{1996}\right)⋮12\)

b, tương tự nhưng nhóm 3 số hạng

Phác Thái Anh
27 tháng 10 2018 lúc 21:44

Bài ở đâu đấy Ly, k cho tớ đi!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Phác Thái Anh
27 tháng 10 2018 lúc 21:44

Ý tớ là k

Phạm Ngọc Uyên
Xem chi tiết
Lê Tuấn Minh
Xem chi tiết
Nguyễn Thị Duyên
Xem chi tiết
Đỗ Thị Bích Ngọc
Xem chi tiết
An Hoà
12 tháng 11 2016 lúc 19:38

S = 3 + 3 2 + ... + 3 1998

S = ( 3 + 3 2 ) + ... + ( 3 1997 + 3 1998 )

S = ( 3 + 3 2 ) + ... + ( 3 + 3 2 ) . 3 1996

S = 12 + ... + 12 . 3 1996

S = 12 ( 1 + ... + 3 1996 )

Vì 12 chia hết cho 12

=> S chia hết cho 12

S = 3 + 3 2 + ... + 3 1998

S = ( 3 + 3 2 + 3 3 ) + ... + ( 3 1996 + 3 1997  + 3 1998 )

S = ( 3 + 3 2 + 3 3 ) + ... + ( 3 + 3 2 + 3 3 ) 3 1995

S = 39 + ... + 39 . 3 1995

S = 39 ( 1 + ... + 3 1995 )

Vì 39 chia hết cho 39

=> S chia hết cho 39

Hoàng Thiên Trang
12 tháng 11 2016 lúc 19:43

Có S= 3+32+....+31998

=> S= (3+32) + (33+34)+ (31997+ 31998)

=> S= 12+ 32.12+...+31996.12

=> S chia hết cho 12 vì mỗi hạng tử đều chia hết cho 12

Do S chia hết cho 12 mà S chia hết cho 3 => S chia hết cho 39

Nguyễn Thành Trung
Xem chi tiết
quan duy
20 tháng 2 2018 lúc 20:58

a,: S chia hết cho 12                                                                                                                                                                                                          S=(3+3^2 )+(3^3+3^4)+...+(3^1997+3^1998)                                                                                                                                                      S=3.(3+3^2)+3^3.(3+3^2)+...+3^1997.(3+3^2)                                                                                                                                                    S=3.12+3^3.12+...+3^1997.12                                                                                                                                                                            S=12.(3+3^2+3^3+...+3^1998)                                                                                                                                                               

Nguyễn Thành Trung
20 tháng 2 2018 lúc 20:37

comment cách làm cho mình với ; http:ngocrongonline.com  vào giải trí tý !! :>

Nguyễn Thành Trung
21 tháng 2 2018 lúc 15:58

thank you!

Hoàng  Bảo Lịnh
Xem chi tiết
Mai Trung Nguyên
10 tháng 2 2019 lúc 8:08

\(A,\)\(S=\left(3+3^2\right)+\left(3+3^2\right)3^2+...+\left(3+3^2\right)3^{2018} \)

\(\Rightarrow S=9\left(1+3^2+...+3^{2018}\right)\)

\(\Rightarrow S⋮9\)

\(B,\)\(S=3+3^2+3^3+\left(3+3^2+3^3\right)3^3+...\left(3+3^2+3^3\right)3^{2017}\)

\(S=39+39.3^3+...+39.3^{2017}\)

Nhưng xét lại thì thấy 2017 không chia hết cho 3 nên câu b có lẽ sai đề =)))))

\(C,\)\(S=\left(1+3+3^2+3^3\right).3+\left(1+3+3^2+3^3\right).3^4+...+\left(1+3+3^2+3^3\right).3^{2017}\)

\(S=40.3+40.3^4+...+40.3^{2017}\)

\(Vậy...\)

Lê Phương Trâm
Xem chi tiết
Bích Ngọc
Xem chi tiết
Nguyễn Thanh Hằng
29 tháng 5 2017 lúc 9:56

a)Ta có :

\(S=3+3^2+3^3+.................+3^{1998}\)(1998 số hạng)

\(\Rightarrow S=\left(3+3^2\right)+\left(3^3+3^4\right)+..............+\left(3^{1997}+3^{1998}\right)\)(999 nhóm)

\(\Rightarrow S=12+3^3\left(3+3^2\right)+.................+3^{1997}\left(3+3^2\right)\)

\(\Rightarrow S=12\left(1+3+3^2+.................+3^{1997}\right)\)

\(\Rightarrow S⋮12\rightarrowđpcm\)

b) Ta có :

\(S=3+3^2+3^3+......................+3^{1998}\)

\(\Rightarrow S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+.............+\left(3^{1996}+3^{1997}+3^{1998}\right)\)

\(\Rightarrow S=39+3^4\left(3+3^2+3^3\right)+....................+3^{1996}\left(3+3^2+3^3\right)\)

\(\Rightarrow S=39+3^4.39+................+3^{1996}.39\)

\(\Rightarrow S=39\left(1+3^4+............+3^{1996}\right)\)

\(\Rightarrow S⋮39\rightarrowđpcm\)