Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Thúy Lê
Xem chi tiết
Loan Mai Thị
Xem chi tiết
Phùng Việt Tuấn
22 tháng 2 2016 lúc 9:43

xét tam giác ABCvà A'B'C'có

AB=A'B'


 

Minh Châu Cao
Xem chi tiết
Lê Gia Hưng
11 tháng 12 2021 lúc 10:22

.......?????? Đài phát thanh ?

Baỏ Trần
Xem chi tiết
Trịnh Việt Dũng
15 tháng 6 2022 lúc 20:34

câu 1 E + F = 90 độ

câu 2 góc AMB và góc AMC

câu 3 AC = MP

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 4 2017 lúc 8:50

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 5 2019 lúc 8:57

Để tam giác ABC bằng tam giác MNK theo trường hợp cạnh – góc – cạnh thì ta cần thêm điều kiện là  A C = M K

Đáp án C

Nguyễn Thùy Dương
Xem chi tiết
Midori
Xem chi tiết
Đông Phương Lạc
22 tháng 8 2019 lúc 10:19

Mk chỉ chứng minh chứ hông vẽ hình đâu nha !!!

C/m:

Từ giả thiết ta có:

\(\widehat{BAC}=180^0-\left(\widehat{ABC}+\widehat{ACB}\right)=180^0-\left(75^0+60^0\right)=45^0\)                 \(\left(.\right)\)

\(\widehat{B}_2=\widehat{ABC}-\widehat{B_1}=75^0-45^0=30^0\)

\(\widehat{C}_2=\widehat{ACB}-\widehat{C_1}=60^0-45^0=15^0\)

Giả sử \(MA\ne MB\)ta xét 2 trường hợp:

T/ hợp 1\(MA< MB\)

Xét \(\Delta MAB,\)vì \(MA< MB\)nên \(\widehat{B_2}< \widehat{A}_2\)

Nguyễn Linh Chi
22 tháng 8 2019 lúc 11:03

Nối MA.

Để chứng minh MA =MB. Ta dùng phản chứng.

G/s: \(MA\ne MB\)

Vì tam giác MBC vuông cân => MB=MC và \(\widehat{MCB}=\widehat{MBC}=45^o\)

Xét tam giác ABC có: \(\widehat{ACB}=60^o;\widehat{ABC}=75^o\)=> \(\widehat{CAB}=180^o-60^o-75^o=45^o\)

Vì M nằm trong tam giác ABC => \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)và \(\widehat{ABM}=\widehat{ABC}-\widehat{MBC}=75^o-45^o=30^o\)

+) TH1: MA> MB=MC

Xét tam giác MAB có: MA >MB => ^MAB < ^MBA => \(\widehat{MAB}< 30^o\)

Xét tam giác MAC có: MA >MC => ^MAC < ^MCA => \(\widehat{MAC}< 15^o\)

=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}< 30^o+15^o\Rightarrow\widehat{BAC}< 45^o\)(vô lí)

+) TH1: MA< MB=MC

Xét tam giác MAB có: MA <MB => ^MAB > ^MBA => \(\widehat{MAB}>30^o\)

Xét tam giác MAC có: MA <MC => ^MAC > ^MCA => \(\widehat{MAC}>15^o\)

=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}>30^o+15^o\Rightarrow\widehat{BAC}>45^o\)(vô lí)

=> Điều giả sử là sai

=> MA=MB

Đông Phương Lạc
22 tháng 8 2019 lúc 16:15

Làm tiếp nè:

Xét \(\Delta MAB,\)vì \(MA< MB\)nên \(\widehat{B_2}< \widehat{A_2}\)( quan hệ góc - cạnh đối diện )

Vì \(MC=MB\)nên \(MA< MC\)

Do đó: \(\widehat{C_2}< \widehat{A_1}\) ( quan hệ góc - cạnh đối diện trong \(\Delta MAC\))

Suy ra: \(\widehat{B}_2+\widehat{C_2}< \widehat{A_1}+\widehat{A_2}\)hay \(30^0+15^0=45^0< \widehat{BAC}\): trái với \(\left(.\right)\)

T/hợp 2: \(MA>MB\)

Xét \(\Delta MAB,\)vì \(MA>MB\)nên \(\widehat{B_2}>\widehat{A_2}\)( quan hệ góc - cạnh đối diện )

Vì \(MC=MB\)nên \(MA>MC\)

Dó đó: \(\widehat{C_2}>\widehat{A_1}\) ( quan hệ góc - cạnh đối diện trong \(\Delta MAC\))

Suy ra: \(\widehat{B}_2+\widehat{C_2}>\widehat{A_1}+\widehat{A_2}\)hay \(30^0+15^0=45^0>\widehat{BAC}\): trái với \(\left(.\right)\)

Vậy điều giả sử \(MA\ne MB\)là sai, hay \(MA=MB\)

Bài làm của mk hay của Cô Linh Chi đều đc nha !

Ny Pii
Xem chi tiết
Mirai
21 tháng 3 2021 lúc 16:20

undefined

hien nguyen
Xem chi tiết