giai giùm với nha:
chứng minh rằng :
A= 2 + 2 mũ 2 + 2 mũ 3+........+ 2 mũ 2016 chia hết cho 7
\(2^1+2^2+2^3+...+2^{2016}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2015}+2^{2016}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2015}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{2015}\right)⋮3\)
\(2^1+2^2+2^3+...+2^{2016}\)
\(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)
Chứng tỏ rằng :
A) 5 mũ 2016 + 5 mũ 2015 + 5 mũ 2016 chia hết cho 31
B) 1+7+7 mũ 2 + 7 mũ 3+ .....+7 mũ 701 chia hết cho 8
C) 4 mũ 39 + 4 mũ 40+ 4 mũ 41 chia hết cho 28
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên
Cho A = 2+2 mũ 2+2 mũ 3+......+2 mũ 119 + 2 mũ 120
a) Chứng minh rằng A chia hết cho 3
b) Chứng minh rằng A chia hết cho 7
a) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow A=\left(2+2^2\right)+...+\left(2^{119}+2^{120}\right)\)
\(\Rightarrow A=\left(2+2^2\right)+...+2^{118}.\left(2+2^2\right)\)
\(\Rightarrow A=6+...+2^{118}.6\)
\(\Rightarrow A=6.\left(1+...+2^{118}\right)⋮3\Rightarrow A⋮3\left(đpcm\right)\)
b) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+2^{117}.\left(2+2^2+2^3\right)\)
\(\Rightarrow A=14+...+2^{117}.14\)
\(\Rightarrow A=14.\left(1+...+2^{117}\right)⋮7\Rightarrow A⋮7\left(đpcm\right)\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
cho A bằng 2 mũ 1 + 2 mũ 2 +2 mũ 3 + ..... + 2 mũ 120
chứng minh rằng A chia hết cho 7
chứng minh rằng A chia hết cho 31
chứng minh rằng A chia hết cho 217
A = 21 + 22 + 23 + ................ + 2120
Chứng minh chia hết cho 7
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................ + 2118.7
A = 7.(2 + 24 + ........... + 2118)
Chứng minh chia hết cho 31
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)
A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)
A = 2.31 + 26.31 + ....... + 2116 . 31
A = 31.(2 + 26 + ........... + 2116)
A = 21 + 22 + 23 + ................ + 2120
Chứng minh chia hết cho 7
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................ + 2118.7
A = 7.(2 + 24 + ........... + 2118)
Chứng minh chia hết cho 31
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)
A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)
A = 2.31 + 26.31 + ....... + 2116 . 31
A = 31.(2 + 26 + ........... + 2116)
chứng minh 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ....... + 2 mũ 2016 chia hết cho 3 và 7
Đặt A=2+22+23+24+...+22016
A=(2+22)+(23+24)+...+(22015+22016)A=2(1+3)+23(1+2)+...22015(1+2)
A=2.3+23.3+...+22015.3
A=3.(2+23+...+22015)chia hết cho 3
A=(2+22+23)+(24+25+26)+...+(22014+22015+22016)
A=2(1+2+22)+24(1+2+22)+...+22014(1+2+22)
A=2.7+24.7+...+22014.7
A=7.(2+24+...+22016)chia hết cho 7
CHỨNG MINH RẰNG
A = 2 + 2 mũ 2 + 2 mũ 3 + ......+ 2 mũ 60 chia hết cho 3,7,15
B= 3 +3 mũ 3 + 3 mũ 5 +.........+3 mũ 1991 chia hết cho 13 , 41
D= 11 mũ 9 + 11 mũ 8 + 11 mũ 7 +.........+11 +1 chia hết cho 5
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5