Cho A = 8n + 111...1 ( n chữ số 1 )
Chứng minh A chia hết cho 9
cho a= 8n+1111...111(n thuộc n* ; n chữ số 1). chứng minh a chia hết cho 9 ?
Cho A = 8n +111...1 ( có n chữ số 1 )
Chứng minh A chia hết cho 9
Cho A= 8n + 111...111 ( n chữ số 1 ) . Chứng minh rằng , A chia hết cho 9.
Lời giải:
$\underbrace{\overline{111...1}}_{n}$ có tổng các chữ số là $n$
$\Rightarrow \overline{111....1}-n\vdots 9$
$\Rightarrow \overline{111....1}-n+9n\vdots 9$
$\Rightarrow \overline{1111...1}+8n\vdots 9$
Hay $A\vdots 9$
cho các số 1,3,4,7,8.từ năm chữ số này có thể lập được tát cả bao nhiêu số chẵn có năm chữ số khác nhau sô
@ Châu Ngọc:
Số có 5 chữ số có dạng: \(\overline{abcde}\)
Trong đó:
Có 2 cách chọn e
Có 4 cách chọn a
Có 3 cách chọn b
Có 2 cách chọn c
Có 1 cách chọn d
Số số chẵn có 5 chữ số khác nhau được lập từ các chữ số đã cho là:
4 \(\times\) 3 \(\times\) 2 \(\times\) 1 \(\times\) 2 = 48 (số)
Đáp số: 48 số
bài 1: cho biết các số tự nhiên a và 6a có tổng các chữ số giống nhau.. chứng minh rằng a chia hết cho 9
bài 2: chứng minh rằng với mọi số tự nhiên n ta có:
a) n. ( n+2) . (n+7) chia hết cho 3
b) 5^n -1 chia hết cho 4
c)n^2+n.5 không chia hết cho 7
bài 3:chứng minh rằng số 111....111 +8n chia hết cho 9( số 111...111 có n chữ số 1)
Cho A = 8n + 111.......1 [ n chữ số 1 ] (n thuộc N2 )
Chứng minh rằng A chia hết cho 9
Cho A=8n+111....1
n chữ số 1
Chứng minh rằng A chia hết cho 9
a.1111111...1 = 10^(n-1) + 10^(n-2) +....1 (gồm n số 1)
10^n chia 9 dư 1 => 10^(n-1) = 9.k(n-1) + 1
10^(n-1) chia 9 dư 1 => 10^(n-2) = 9.k(n-2) +1
.....
10 chia 9 dư 1 => 10 = 9.k1 + 1 (ở đây k1=3)
=>11111....1 = 9.(k1 + k2 +... + k(n-1)) +(1+1+...+1) (gồm n số 1)
= 9.A + n
=>8n + 11111...1= 9A +9n chia hết cho 9
b.11111111....1 (gồm 27 số 1)
= 1111...100.....0 + 11111...10000...0 + 1111...1
-------------------------- ----------------------- -----------
9chữsố1;18chữsố 0 9chữsô1;9chữsố0 9chữsô1
=111111111 x (10^18 + 10^9 +1)
ta có: 111111111 chia hết cho 9 (tổng các chữ số =9)
10^18 chia 3 dư 1
10^9 chia 3 sư 1
=> 10^18 + 10^9 +1 chia hết cho 3
vậy 1111.....1111 chia hết cho 27 (gồm 27 số 1)
A=8n thì n=1 vậy A=81+111111111 vì chúng cộng với nhau sẽ chia được hết cho 9
1/Chứng minh rằng với e thuộc N , thì các số sau chia hết cho 9 :
a/10n-1
b/10n+8
2/Tìm điều kiện của n thuộc N để số 10n-1 chia hết cho 9 và 11
3/Cho A = 8n + 1111...111 (n thuộc N*)
1111.....111 có n chữ số 1
Chứng minh rằng A chia hết cho 9
\(1.a,10^n-1=100..0-1\)(n chữ số 0)=999..99(n chữ số 9)chia hết cho (vì có tổng bằng 9+9+..+9 chia hết cho 9)
\(b,10^n+8=100..0+8\)(n chữ số 0) = 1000...08.
Tổng các chữ số là: 1+0+0+...+8=9 chia hết cho 9.
2.
Tạm thời mik chỉ bik lm bài 1 nên pn thông cảm nhé
1 a) pn thao khảo tại nhé do ở đây có bài giống nên mik gửi link luôn nhé! http://olm.vn/hoi-dap/question/651590.html
b) Ta có: 10n+8= 1000000000000.......000+8
n chữ số 0
=> 10n+8= 10000000000........008
n chữ số 8
Ta có tổng các chữ số của 10n+8 bằng: 1+00000000.....000 ( Với n chữ số 0)+8= 1+0+8=9
Vì 9 chia hết cho 9 => 10n+8 chia hết cho 9
ta có : \(^{10^n}\) = 999...9 ( có n số 9 ) vì 9999...9 chia hết cho 9
suy ra 10^n - 1 chia hết cho 9
A=8n + 111...1, có n số 1. Chứng minh A chia hết cho 9
a) Cho n là số tự nhiên. Chứng minh rằng n2 + n + 1 không chia hết cho 4 và 5
b) Cho A =8n + 111..111 ( n là số TN và n khác 0 ). Chứng minh rằng A chia hết cho 9
mình không biết làm bài này đâu.Thank you very much