\(\left(12^{1980}-2^{1000}\right)\)
chứng minh cia hết cho 10
Chứng minh
121980-21000 chia hết cho 10
191981+111980 chia hết cho 10
Chứng minh rằng :
a/ (121980 - 21000 ) chia hết cho 10
b/ (191981 + 111980 ) chia hết cho 10
Chứng minh rằng 121980 - 21000 chia hết cho 10
Chứng minh rằng: (12^1980-2^1000) chia hết cho 10. A= 1+4+4^2+...+4^99 chia hết cho 17
\(A=1+4+4^2+...+4^{99}\)
\(A=\left(1+4+4^2+4^3\right)+\left(4^4+4^5+4^6+4^7\right)+...+\left(4^{96}+4^{97}+4^{98}+4^{99}\right)\)
\(A=85+4^7\left(1+4+4^2+4^3\right)...+4^{96}\left(1+4+4^2+4^3\right)\)
\(A=85+4^7.85+...+4^{96}.85\)
\(A=85.\left(1+4^7+...+4^{96}\right)\)
Vì 85 chia hết cho 17 nên A chia hết cho 17
chứng minh rằng a;8^102-2^102 chia hết cho 10
b;17^5+24^4-13^21 chia hết cho 10
c;12^1980-2^1000 chia hết cho 10
d;19^1981+11^1980 chia hết cho 10
chứng minh rằng
19^1981+11^1980 chia het cho 10
12^1980-2^1000 chia het cho 10
A =19^1981+11^1980
19^1981 = ( 2.10 -1)^1981 đồng dư -1 (mod 10)
11^1980 = ( 10 +1)^1980 đồng dư 1 (mod 10)
=> A chia hết cho 10.
b- ta chứng minh B =10^n - 10 luôn chia hết cho 45.
B = 10^n - 10 = 10(10^n -1)=10.9.(10^n + 10^(n-1) +...+1)
=> B chia hết cho 5 và 9
mà 5 và 9 nguyên tố cùng nhau vậy B chia hết cho 5.9=45
CHỨNG TỎ RẰNG :
a) A=2+2^2+2^3+2^4+...+2^10 CHIA HẾT CHO 31
b)B=12^1980-2^1000 CHIA HẾT CHO 10
a) A = \(\left(2+2^2+2^3+...+2^5\right)+\left(2^6+2^7+...+2^{10}\right)\)
\(=\left(2.31\right)+2^5.31=31.\left(2+2^5\right)\)
Vậy A chia hết cho 31
Chứng minh :
a) \(36^{36}-9^{10}\) chia hết cho 45
b) \(7^{1000}-3^{1000}\) chia hết cho 10
c) \(\left(2^{10}+2^{11}+2^{12}\right):7\) là 1 số tự nhiên
d) \(\left(8^{10}-8^9-8^8\right):55\) là 1 số tự nhiên
a) Vì \(45=BCNN\left(5,9\right);ƯCLN\left(5,9\right)=1\)
Ta có :
\(36^{36}-9^{10}⋮9\) \(\left(1\right)\)
Mặt khác :
\(36^{36}=\left(......6\right)\)
\(9^{10}=\left(9^2\right)^5=81^5=\left(.......1\right)\)
Từ \(\Rightarrow36^{36}-9^{10}=\left(.....6\right)-\left(...1\right)=\left(.....5\right)⋮5\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Rightarrow36^{36}-9^{10}⋮45\rightarrowđpcm\)
b) Ta có :
\(7^{1000}=\left(7^2\right)^{500}=49^{500}\)
\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)
Ta có lũy thừa tận cùng là 9 khi nâng lên lũy thừa bặc lũy thừa chẵn chữ số tận cùng sẽ là 1
\(\Rightarrow\left\{{}\begin{matrix}49^{500}=\left(....1\right)\\9^{500}=\left(....1\right)\end{matrix}\right.\)
\(\Rightarrow7^{1000}-3^{1000}=\left(.....1\right)-\left(...1\right)=\left(...0\right)⋮10\)
Vậy \(7^{1000}-3^{1000}⋮10\rightarrowđpcm\)
tìm chữ số tận cùng
7^1991
5^1992
chung minh rang
51^n + 47^102 chia het cho 10
19^1991+11^1980 chia het 10
12^1980-2^1000 chia hết cho 10