\(cmr:\left(10^n-1\right)\)chia hết cho 9
cmr
A=\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)chia hết cho 9 với mọi n là só nguyên
áp dụng hằng đẳng thức \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)+3abc\)
=> A= (n+n+1+n+2)[n2 +(n+1)2 +(n+2)2 -n(n+1)-n(n+2)- (n+1)(n+2)] +3n(n+1)(n+2)
= (3n+3).3 +3n(n+1)(n+2) = 9n(n+1) + 3n(n+1)(n+2)
n(n+1)(n+2) là 3 số nguyên liên tiếp nên luôn tồn tại một số chia hết cho 3 => 3n(n+1)(n+2) chia hết cho 9
9n(n+10 chia hết cho 9
=> A chia hết cho 9
Xét hằng đẳng thức sau đây: x3 + y3 + z3 - 3xyz
<=> ( x + y )3 - 3xy( x + y ) + z3 - 3xyz
<=> [ ( x + y )3 + z3 ] - 3x2y - 3xy2 - 3xyz
<=> ( x + y + z )[ ( x + y )2 - ( x + y )z + z2 ] - 3xy ( x + y + z )
<=> ( x + y + z )( x2 + 2xy + y2 - zx - zy + z2 ) - 3xy ( x + y + z )
<=> ( x + y + z )( x2 + y2 - xy - zx - zy + z2 )
<=> x3 + y3 + z3 = ( x + y + z )( x2 + y2 - xy - zx - zy + z2 ) + 3xyz
Áp dụng hằng đẳng thức trên, ta có:
( n + n+ 1 + n + 2 )[ n2 + (n + 1 )2 - n( n+ 1 ) - (n+2)n - ( n + 1 )( n +2 ) + (n+2)2 ] + 3n( n + 1 )( n + 2 )
<=> ( 3n + 3 )( n2 + n2 + 2n + 1 - n2 - n - n2 - 2n - n2 - 2n - n - 2 + n2 + 4n +4 ) + 3n( n + 1 )( n + 2 )
<=> ( 3n + 3 )3 + 3n( n + 1 )( n + 2 )
<=> 9( n + 1 ) + 3n( n + 1 )( n + 2 )
Vì n( n + 1 )( n + 2 ) là 3 chữ số liên tiếp chia hết cho 6
=> 3n( n + 1 )( n + 2 ) = 3.6 = 18 chia hết cho 9
=> 9( n + 1 ) + 3n( n + 1 )( n + 2 ) chia hết cho 9
=> n3 + ( n + 1 )3 + ( n + 2 )3 chia hết cho 9 ( đpcm )
Khi n=1 ta có \(u_1=1^3+\left(1+1\right)^3+\left(1+2\right)^3=1+8+27=36⋮9\)(đúng)
Giả sử mệnh đề đúng khi n=k (k >=1) tức là \(u_k=k^3+\left(k+1\right)^3+\left(k+2\right)^2⋮9\)
Bây giờ ta sẽ chứng minh mệnh đề cũng đúng khi n=k+1, tức là ta phải chứng minh \(u_{k+1}=\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3⋮9\)
Ta có \(u_{k+1}=\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3=\left(k+1\right)^3+\left(k+2\right)^3+k^3+9k^2+27k+27\)
\(=\left[\left(k+1\right)^3+\left(k+2\right)^3+k^3\right]+9\left(k^2+3k+3\right)=u_k+9\left(k^2+3k+3\right)⋮9\)
=> mệnh đề đúng với n=k+1
Vậy theo phương pháp quy nạp toán học \(u_n=n^3+\left(n+1\right)^3+\left(n+2\right)^3\)chia hết cho 9 với mọi n là số nguyên
CMR : Với n thuộc N sao
a) A=\(\left(3^{n+2}-2^{n+2}+3^n-2^n\right)\)
CMR : A chia hết cho 10
b) B=\(\left(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\right)\)
CMR : B chia hết cho 6
CMR
Vs mọi số tự nhiên n, thì
\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)chia hết cho 9
CMR
Vs mọi số tự nhiên n, thì
\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)chia hết cho 9
\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)
\(=n^3+n^3+3n^2+3n+1+n^3+3n^2.2+3n.2^2+2^3\)
\(=3n^3+9n^2+15n+9=3\left(n^3+3n^2+5n+3\right)\)
\(=3\left(n^3+n^2+2n^2+2n+3n+3\right)\)
\(=3\left[n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)\right]\)
\(=3\left[\left(n+1\right)\left(n^2+2n\right)+3\left(n+1\right)\right]\)
\(=3n\left(n+1\right)\left(n+2\right)+9\left(n+1\right)\)
Vì n(n+1)(n+2) là tích 3 stn liên tiếp nên tích này chia hết cho 3
=>\(3n\left(n+1\right)\left(n+2\right)⋮9\) mà \(9\left(n+1\right)⋮9\)
=>\(n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)
\(cmr:\left(10^n-1\right)\)chia hết cho 3
10n=100000...0000(n chữ số 0)
10n-1=999....999(n chữ số 9)
=>10n-1 luôn chia hết cho 3
Ta có:
10n - 1 = 100...0 - 1 (n chữ số 0) = 999...9 (n - 1 chữ số 9)
=> tổng các chữ số của số đó là> (n-1).9. Vì 9 chia hết cho 3 => (n-1).9 chia hết cho 3 => 999...9 (n-1 chữ số 9 chia hết cho 3) => 10n - 1 chia hết cho 3 (đpcm)
Ta có: 10 đồng dư với 1(mod 3)
=>10n đồng dư với 1n(mod 3)
=>10n đồng dư với 1(mod 3)
=>10n-1 đồng dư với 1-1(mod 3)
=>10n-1 đồng dư với 0(mod 3)
=>10n-1 chia hết cho 3
CMR nếu \(\left(5^n+1\right)⋮9\) thì (n - 3) chia hết cho 6.
\(CMR\left(10^n-1\right)\)chia het cho 9
10n - 1
Nếu n = 0
10n - 1 = 0 chia hết cho 9
Nếu n > 0
=> 10n - 1 = 9....9999 ( có n chữ số 9)
Tổng các chữ số là n.9 => Chia hết cho 9
Vậy 10n - 1 chia hết cho 9 ( n thuộc N)
Anh Minh sai ở câu 10n - 1 = 999999..99999 ấy
Lỡ khi n = 0 thì sao , có số 9 nào không
Mà sao lại có n - 1 chữ số 9 vậy
Cmr :
a) \(36^{36}-9^{10}\) chia hết cho 45
b) \(7^{1000}-3^{1000}\) chia hết cho 10
c)\(\left(2^{10}+2^{11}+2^{12}\right):7\)là 1 số tự nhiên
d)\(\left(8^{10}-8^9-8^8\right):55\) là 1 số tự nhiên
CMR: với mọi số tự nhiên n thì:
a)\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho 5
b)\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)chia hết cho 2
a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)
a)
= n3 + 2n2 + 3n2 + 6n - n - 2 + 2
= 5n2 + 5n
= 5(n2 + n ) chia hết cho 5
b)
= 2(12n +5) chia hết cho 2