Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thành Phát
Xem chi tiết
Nguyễn Thành Phát
Xem chi tiết
Nguyễn Thành Phát
Xem chi tiết
Lê Bùi
12 tháng 12 2017 lúc 10:00

đặt \(\left\{{}\begin{matrix}S=X+Y\\P=X.Y\end{matrix}\right.\)

a)\(\left\{{}\begin{matrix}S+P=5\\S^2-P=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}P=5-S\\S^2+S-12=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}P=5-S\\\left[{}\begin{matrix}S=-4\\S=3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}S=-4\\P=9\end{matrix}\right.\\\left\{{}\begin{matrix}S=3\\P=2\end{matrix}\right.\end{matrix}\right.\)

suy ra tìm đc x và y

b,c tương tự

Nhi Đào Quỳnh
Xem chi tiết
Không Tên
25 tháng 2 2020 lúc 16:56

1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)

Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.

Khách vãng lai đã xóa
Nguyễn Thị Hòa
Xem chi tiết
Trần Thành Phát Nguyễn
Xem chi tiết
Trung Hiếu Lê
31 tháng 12 2017 lúc 10:27

Bài 1:

Ta có:

[tex]\left\{\begin{matrix} xy^{2}+x+y+\frac{1}{y}=4 & \\ y^{2}+x+\frac{1}{y}=3 & \end{matrix}\right.(y\neq 0)[/tex]

Từ phương trình suy ra:

[tex]\left\{\begin{matrix} y(xy+1)+\frac{xy+1}{y}=4 & \\ y^{2}+\frac{xy+1}{y}=3 & \end{matrix}\right.[/tex]

Đặt [tex]xy+1=a,y=b(b\neq 0)[/tex] ta có:

[tex]\left\{\begin{matrix} b^{2}+\frac{a}{b}=3 & \\ ab+\frac{a}{b}=4 & \end{matrix}\right.[/tex]

[tex]\Rightarrow \left\{\begin{matrix} 3b-b^{3}=a & \\ ab^{2}+a=4b & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3b-b^{3}=a & \\ b\left ( 2b^{2}-b^{4}-1 \right )=0 & \end{matrix}\right.[/tex]

[tex]\Leftrightarrow \left\{\begin{matrix} b=0 & \\ a=0 & \end{matrix}\right.[/tex](Loại) hoặc [tex]\left\{\begin{matrix} b=1 & \\ a=2 & \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} b=-1 & \\ a=-2 & \end{matrix}\right.[/tex]

TH1: [tex]\left\{\begin{matrix} b=1 & \\ a=2 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1 & \\ y=1 & \end{matrix}\right.[/tex]

TH2: [tex]\left\{\begin{matrix} b=-1 & \\ a=-2 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=3 & \\ y=-1 & \end{matrix}\right.[/tex]

Vậy hệ phương trình có hai nghiệm: [tex]\left\{\begin{matrix} x=1 & \\ y=1 & \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} x=3 & \\ y=-1 & \end{matrix}\right.[/tex]

Trung Hiếu Lê
31 tháng 12 2017 lúc 10:33

Câu trả lời đầy đủ đây nhé:

attachFull36793

Phương Anh
Xem chi tiết
Dương Hoàng Minh
19 tháng 6 2016 lúc 7:39

ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiucche

Nguyễn Duy Long
Xem chi tiết
Nguyễn Duy Long
5 tháng 7 2017 lúc 8:13

giúp câu 2

Rau
5 tháng 7 2017 lúc 8:43

\(4\left(x^2+xy+y^2\right)=3\left(x+y\right)^2+\left(x-y\right)^2.\)
Đặt (x+y)=a ; (x-y)=b là ok nhé !!!!

thuyphi nguyen
Xem chi tiết