Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Phan Nghĩa
9 tháng 7 2021 lúc 21:28

vô câu hỏi tương tự có nhé idol , đăng bài bị trùng rồi xD

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
9 tháng 7 2021 lúc 21:34

Harley chuyên Lam Sơn mới thi thì làm gì có chuyện trùng được bro(:

Khách vãng lai đã xóa
Phan Nghĩa
9 tháng 7 2021 lúc 21:35

https://olm.vn/hoi-dap/detail/428406019268.html đui à bro ? =)

Khách vãng lai đã xóa
Vũ Minh Anh
Xem chi tiết
Đoàn Đức Hà
9 tháng 3 2021 lúc 17:11

Giả sử tồn tại số \(p\)thỏa mãn. 

Ta đặt \(\frac{p^2-p-2}{2}=a^3\).

\(p=2\)thỏa mãn.

\(p>2\)do là số nguyên tố nên \(p\)lẻ.

Ta có: \(\frac{p^2-p-2}{2}=a^3\Leftrightarrow p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)\)suy ra \(p\)là ước của \(a+1\)hoặc \(a^2-a+1\).

+) \(p|a+1\)\(\frac{p^2-p-2}{2}=a^3\)suy ra \(a< p\Rightarrow a+1=p\).

Thế vào cách đặt ban đầu ta được \(\frac{\left(a+1\right)^2-\left(a+1\right)-2}{2}=a^3\Leftrightarrow2a^3-a^2-a+2=0\)

\(\Leftrightarrow a=-1\)không thỏa. 

+) \(p|a^2-a+1\): Đặt \(a^2-a+1=kp\)(1).

\(p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)=2\left(a+1\right)kp\)

\(\Rightarrow p-1=2\left(a+1\right)k\Leftrightarrow p=2k\left(a+1\right)+1\)thế vào (1): 

\(a^2-a+1=k\left[2k\left(a+1\right)+1\right]\)

\(\Leftrightarrow a^2-\left(2k^2+1\right)a-2k^2-k+1=0\)

\(\Delta=\left(2k^2+1\right)^2-4\left(-2k^2-k+1\right)=4k^4+12k^2+4k-3\).

Ta cần tìm số tự nhiên \(k\)để \(\Delta\)là số chính phương. 

Ta có: \(4k^4+12k^2+4k-3>4k^4+8k^2+4=\left(2k^2+2\right)^2\)

\(4k^4+12k^2+4k-3< 4k^4+16k^2+16=\left(2k^2+4\right)^2\)

Theo nguyên lí kẹp suy ra \(4k^4+12k^2+4k-3=\left(2k^2+3\right)^2\)

\(\Leftrightarrow4k-3=9\Leftrightarrow k=3\).

Với \(k=3\)\(a^2-19a-20=0\Rightarrow a=20\Rightarrow p=127\).

Vậy \(p\in\left\{2,127\right\}\).

Khách vãng lai đã xóa
Bui Cam Lan Bui
Xem chi tiết
Bui Cam Lan Bui
Xem chi tiết
Bui Cam Lan Bui
9 tháng 10 2015 lúc 21:03

bài kia dẽ mà lm bài này cho vui

ghgfh ghsjg
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Le Ngoc Hai Anh
Xem chi tiết
Lưu Thi Thi
21 tháng 8 2016 lúc 15:03

Câu a =13 

Câu b =2 con câu c lam tuong tu 

Trần Trung Hiếu
29 tháng 10 2016 lúc 15:45

tại sao caí bài này  ko làm đcj

Trần Trung Hiếu
29 tháng 10 2016 lúc 15:47
câu c cũng khó
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 7 2017 lúc 16:26

1.Với  a = 2 ta có 2a + 1 = 5 không thích hợp

Với a   ≠ 2  do a là số nguyên tố nên a lẽ

Vậy 2a + 1 là lập phương của một số lẽ nghĩa là

Từ đó k là ước của a. Do k là số nguyên tố nên k = 1 hoặc k = a

-Nếu k = 1 thì 2a + 1 = (2.1 + 1)3 suy ra a = 13 thớch hợp

-   Nếu a = k từ a = a(4a2 + 6a + 3) do a là nguyên tố nên suy ra

 1 = 4a2 + 6a + 3  không có số nguyên tố a nào thoả món phương trỡnh này  Vì vế phải luụn lớn hơn 1

Vậy a = 13

2.Giả sử  

13 và p là các số nguyên tố , mà n – 1 > 1 và n2 + n + 1 > 1

Nên n – 1 = 13 hoặc  n – 1 = p

-    Với n – 1 =13 thì n = 14 khi đó 13p = n3 – 1 = 2743 suy ta p = 211 là số nguyên tố

- Với n – 1 = p thi n2 + n + 1 = 13 suy ra n = 3 . Khi đó p = 2 là số nguyên tố

 Vậy  p = 2, p = 211 thì 13p + 1  là lập phương của một số tự nhiên

Nham Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 2 2021 lúc 21:06

Đặt \(13p+1=n^3\left(n\in N\right)\)

\(\Leftrightarrow13p=n^3-1\)

\(\Leftrightarrow13p=\left(n-1\right)\left(n^2+n+1\right)\)

Trường hợp 1: \(n-1=13\forall n^2+n+1=p\)

\(\Leftrightarrow n=14\)

hay \(p=14^2+14+1=196+14+1=211\)(nhận)

Trường hợp 2: \(n-1=p\forall n^2+n+1=p\)

\(\Leftrightarrow n^2+2=13-p\)

\(\Leftrightarrow\left(p+1\right)^2=11-p\)

\(\Leftrightarrow p=2\)(nhận)

Vậy: \(p\in\left\{2;211\right\}\)