cho hai số tự nhiên a,b thỏa mãn:\(2a^2+a=3b^2+b\)
Chứng minh rằng:2a+2b+1 là số chính phương
Cho 2 số tự nhiên a, b thỏa mãn \(2a^2+a=3b^2+b\). Chứng minh rằng:
\(2a+2b+1\)là số chính phương.
Ta có: \(2a^2+a=3b^2+b\)
\(\Leftrightarrow\left(2a^2-2b^2\right)+\left(a-b\right)=b^2\)
\(\Leftrightarrow\left(2a+2b\right)\left(a-b\right)+\left(a-b\right)=b^2\)
\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)
*CM 2a+2b+1 và a-b nguyên tố cùng nhau
=> 2a+2b+1 cũng là 1 SCP
Ta có:
\(2a^2+a=3b^2+b\)
\(\Leftrightarrow2a^2-2b^2+a-b=b^2\)
\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)
Ta có:
Đặt \(d=\left(a-b,2a+2b+1\right)\).
\(\Rightarrow\hept{\begin{cases}a-b⋮d\\2a+2b+1⋮d\end{cases}}\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2⋮d^2\Rightarrow b⋮d\)
\(\Rightarrow\left(a-b\right)+b=a⋮d\)
\(\Rightarrow\left(2a+2b+1\right)-2a-2b=1⋮d\Rightarrow d=1\).
Do đó \(a-b,2a+2b+1\)là hai số chính phương.
2a2 + a = 3b2 + b => 2a2 - 2b2 + a - b = b2 => 2.(a - b).(a + b) + (a - b) = b2
=> (a - b). (2a + 2b + 1) = b2 (1)
Gọi d = ƯCLN (a-b; 2a + 2b + 1)
=> a - b chia hết cho d và 2a + 2b + 1 chia hết cho d
=> b2 = (a - b). (2a + 2b + 1) chia hết cho d2
=> b chia hết cho d
Lại có 2(a - b) - (2a + 2b + 1) chia hết cho d => -4b - 1 chia hết cho d
=> 1 chia hết cho d => d =1 => a - b và 2a + 2b + 1 nguyên tố cùng nhau (2)
(1)(2) => a- b và 2a + 2b + 1 đều là số chính phương
Cho a,b là các số tự nhiên thỏa mãn: 2a2-3b2=b-a
chứng minh: 2a+2b+1 là số chính phương
Cho \(a\) và \(b\) là các số tự nhiên thỏa mãn \(2a^2+2=3b^2+b\). Chứng minh rằng: \(a-b\) và \(3a+3b+1\) là các số chính phương.
Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.
Cho a,b thuộc N thỏa mãn điều kiện 2a2+a=3b2+b
Chứng minh rằng a-b và 2a+2b+1 đều là số chính phương
Có bổ đề sau: \(a^2=pq\) với \(a,p,q\in Z^+\) và \(\left(p,q\right)=1\) thì p,q là hai số chính phương
\(2a^2-2b^2+a-b=b^2\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)(*)
Gọi d là UWCLN của a-b và 2a+2b+1 ta có từ (*) b chia hết d.
a-b chia hết cho d nên 2a-2b chia hết cho d . Vậy 2a+2b+1-(2a-2b) chia hết d
nên 4b+1 chia hết d mà b chia hết cho d nên 1 chia hết d. Vậy hai số a-b và 2a+2b+1 nguyên tố cùng nhau
Áp dụng bổ đề có đpcm
Cho a và b là các số tự nhiên thỏa mãn 2a2 + a = 3b2 + b.
Chứng minh rằng: (a - b) và (3a + 3b + 1) là các số chính phương.
https://olm.vn/hoi-dap/detail/92192540983.html
Câu hỏi của La Văn Lết - Toán lớp 8
Bạn tham khảo ở đây nhé
Câu hỏi của La Văn Lết - Toán lớp 8 - Học toán với OnlineMath
Em thma khảo bài làm tại link này nhé!
Giải hẳn hoi coi... bên kia xem ko hiểu mới đăng lên chứ!!
Cho a,b là các số tự nhiên thỏa mãn 2a2+a = 3b2+b.
CMR: a-b và 2a+2b+1 đều là số chính phương ?
2a2 + a = 3b2 + b => 2a2 - 2b2 + a - b = b2 => 2.(a - b).(a + b) + (a - b) = b2
=> (a - b). (2a + 2b + 1) = b2 (1)
Gọi d = ƯCLN (a-b; 2a + 2b + 1)
=> a - b chia hết cho d và 2a + 2b + 1 chia hết cho d
=> b2 = (a - b). (2a + 2b + 1) chia hết cho d2
=> b chia hết cho d
Lại có 2(a - b) - (2a + 2b + 1) chia hết cho d => -4b - 1 chia hết cho d
=> 1 chia hết cho d => d =1 => a - b và 2a + 2b + 1 nguyên tố cùng nhau (2)
(1)(2) => a- b và 2a + 2b + 1 đều là số chính phương
có rùi nè, 4b đó: Cho a+b+c=0.
Tính: 1/(b^2+c^2-a^2)+1/(a^2+c^2-b^2)+1/(a^2+b^2-c^2). đó bài này đó
Cho a,b là các số tự nhiên thoả mãn 2a^2+a=3b^2+b
C/minh a-b;2a+2b+1 là các số chính phương
Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2-2b^2+a-b=b^2\)
\(\Rightarrow2\left(a-b\right)\left(a+b\right)+\left(a-b\right)=b^2\)
\(\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\left(1\right)\)
Đặt \(ƯCLN\left(a-b;2a+2b+1\right)=d\) suy ra:
\(\hept{\begin{cases}\left(a-b\right)⋮d\\2a+2b+1⋮d\end{cases}}\) \(\Rightarrow b^2=\left(a-b\right)\left(2a+2b+1\right)⋮d^2\)
\(\Rightarrow b⋮d\). Lại có:
\(2\left(a-b\right)-\left(2a+2b+1\right)⋮d\Rightarrow-4b-1⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Leftrightarrow a-b\) và \(2a+2b+1\) là hai số nguyên tố cùng nhau \(\left(2\right)\)
Kết hợp \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(a-b\) và \(2a+2b+1\) là các số chính phương (Đpcm)
Bài 1: Tìm n là số tự nhiên để 2^n + 19 là số chíng phương
Bài 2:cho a,b số tụ nhiên khác 0 thỏa mãn : 2a^2+a=3b^2 + b.CMR:a-b và 2a+2b+1 là số chính phương
Chứng minh rằng nếu các số nguyên a,b thỏa mãn điều kiện 2a2+a=3b2+b thì a-b và 2a +2b+1 là các số chính phương.
Làm nhak mk tik cko
Cho hai số tự nhiên a, b thỏa mãn \(a^2+b^2+1=2ab+2a+2b\). Chứng minh rằng \(a\)và \(b\)là hai số chính phương liên tiếp.
Ta có: \(a^2+b^2+1=2\left(ab+a+b\right)\)
\(\Leftrightarrow a^2+b^2+1-2ab+2a-2b=4a\)
\(\Leftrightarrow\left(a-b+1\right)^2=4a\)(*)
Do a,b nguyên nên \(\left(a-b+1\right)^2\)là số chính phương. Suy ra a là số chính phương a=x2 (x nguyên)
Khi đó (*) trở thành : \(\left(x^2-b+1\right)^2=4x^2\Rightarrow x^2-b+1=\pm2x\Leftrightarrow b=\left(x\mp1\right)^2\)
Vậy a và b là hai số chính phương liên tiếp.