Give an equilateral triangle with each side 9cm. Find the area of this triangle.
An equilateral triangle with the measure of its side is 6 cm. The area of the triangle is \(\sqrt{m}\) \(cm^2\). Find m
an equilateral triangle of side 12 has its conrner cut off to form a regular hexagon
a) what is the area of the corner cut off?
b) find the are of the
- Trans: Tìm diện tích tam giác đều nội tiếp đường tròn bán kính 6cm.
Giả sử ta có \(ΔABC \) nội tiếp \(O;6cm)\) và \(AB=AC=BC=x(cm)\)
Xét \(ΔABC\) đều có: \(O\) là trọng tâm tam giác
\(\Rightarrow \dfrac{AO}{AH}=\dfrac{2}{3}\) (H là hình chiếu của A trên BC)
Mà \(AO=R=6cm \Rightarrow AH=9(cm)\)
Áp dụng định lý Pytago vào \(ΔACH\) có:
\(AC^2 =AH^2+CH^2 \\ \Leftrightarrow x^2 = 9^2 + (\dfrac{x}{2})^2 \\ \Leftrightarrow x=6\sqrt{3}\)
\(\Rightarrow S_{ΔABC}=\dfrac{1}{2} AH.BC=\dfrac{1}{2} . 9.6\sqrt3 = 27\sqrt3 (cm^2)\)
Vậy \(S=27\sqrt{3}cm^2\)
the area of an equilateral triangle is \(8\sqrt{12}cm^2\)
What is the perimeter of the triangle
A certain number of fifty-cent coins is to from an equilateral triangle. The same number of fifty-cent coins can also be used to from a square. The number of fiftty-cent coins on each side of the square is 6 fewer than the number of fifty-cent coins on each side of the equilateral traingle. How many fifty-cent coins are there altogether?
Given a square with the length of one side is 8cm and an isosceles triangle with the length of its base is 12 cm . If the area of the square equal of the area of the isosceles triangle then is the length of height of the isosceles triangle ?
M.n ơi kb vs mk nha ! Mk là thành viên ms nên chưa có bn !
Girl 2k5 -FA
Given a square with the length of one side is 8 cm and a isosceles triangle with the length of its base is 12 cm. If the area of the square is equal to the area of the isosceles triangle then what is the length of the height of the isosceles triangle, in cm?
Give triangle of ABC have area is 540 cm2. M and N is 2 points in BC's side and each side is CM, MN, NB is equal. From M write paralle lines with AC. From N write parallel with AB, they cut at I. Connect IA, IB, IC. Calculate area of flower garden.
The area of triangle ABC is 300 . In triangle ABC, Q is the midpoint of BC, P is a point on AC between C and A such that CP = 3PA . R is a point on side AB such that the area of \(\Delta\)PQR is twice the area of \(\Delta\)RBQ . Find the area of \(\Delta\)PQR
Dịch thôi chứ ko bt làm:Diện tích tam giác ABC là 300. Trong tam giác ABC, Q là trung điểm BC, P là một điểm trên AC nằm giữa C và A sao cho CP = 3PA. R là một điểm trên cạnh AB sao cho diện tích của \(\Delta\)PQR gấp đôi diện tích của \(\Delta\)RBQ. Tìm diện tích của\(\Delta\) PQR