rut gon (√x/√x-1 + √x/x-1) :(2/x - 2-x?x√x+x)
rut gon
1/x-1-x/1-x^3*x^2+x+1/x+1):(2x+1/x^2+x+1)
toi rut gon dc
x^2+x+1/x^2-1
nhung ko tinh dc gtri nguyen cua x de bt tren co gtri nguyen
rut gon a=[2/3x-2/x+1(x+1/3x-x-1)] : x-1/x
Rut gon
(2x^2+1/x^3-x/x^2+x+1).(1+x^3/1+x-x+x^2/x+1)
rut gon (x^2-2)(1-x) + ( x+3)(x^2-3x+9)
\(\left(x^2-2\right)\left(1-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=\left(x^2-x^3-2+2x\right)+\left(x^3+3^3\right)\)
\(=x^2-x^3-2+2x+x^3+27\)
\(=\left(-x^3+x^3\right)+x^2+2x+\left(-2+27\right)\)
\(=x^2+2x+25\)
rut gon :
x-2/x-1 +2x(1-x)/x2-x
Cái này giống dạng toán thường thôi bạn ạ! Để mình giải cho bạn nhé!
x-2/x-1 + 2x(1-x)/x^2-x = x-2/x-1 + (-2x(x-1))/x(x-1) = x-2/x-1 + (-2x/x) = x^2-2x/x(x-1) +( -2x(x-1)/x(x-1)) = x^2-2x+(-2x(x-1))/x(x-1)
= x^2-2x-2x^2+2x/x(x-1) = -x^2/x(x-1) = -x/x-1
rut gon
x^7+x^6+x^5+x^4+x^3+x^2+x+1/x^2-1
rut gon (x^2+x+1)(x^2-x+1)(x^4-x^2+1)(x^8-x^4+1) mn giup e vs
\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\)
\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\)
\(=\left(x^8+x^4+1\right)\left(x^8-x^4+1\right)\)
\(=x^{16}+x^8+1\)
\(\left(x^2+x+1\right)\left(x^2-x-1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\)
\(=\left(x^4-x^3-x^2+x^3-x^2-x+x^2-x-1\right)\) \(\left(x^{32}-x^{16}+x^4-x^{16}+x^8-x^2+x^8-x^4+1\right)\)
\(=\left(x^4-x^2-2x-1\right)\left(x^{32}-2x^{16}+2x^8-x^2+1\right)\)
cho M=((x^2-1)/(x^4-x^2+1)-1/(x^2+1))(x^4+(1-x^4)/(1+x^2)) a) rut gon b)tim min
rut gon bieu thuc tren (x-1)^3-(x-1).(x^2+x+1)
Lời giải:
$(x-1)^3-(x-1)(x^2+x+1)=(x-1)[(x-1)^2-(x^2+x+1)]=(x-1)(x^2-2x+1-x^2-x-1)=(x-1)(-3x)=-3x(x-1)$