cho tam giác nhọn ABC nội tiếp với đường tròn (O),đường cao AH cắt đường tròn ở D.kẻ đường kính AE.cmr:
a)BC song song với DE
b)BCDE là hình thang cân
Giả sử ABC là tam giác nhọn nội tiếp đường tròn (O).Đường cao AH cắt đường tròn (O) tại D.Kẻ đường kính AE của đường tròn (O).Chứng minh:
a)BC song song với DE
b)Tứ giác BCED là hình thang cân
Mình làm được câu a rồi. Mong mọi người giúp mình câu b với . Mình cần gấp lắm !!!
Giả sử ABC là tam giác nhọn nội tiếp đường tròn (O). Đường cao AH cắt đường tròn (O) tại D. Kẻ đường kính AE của đường tròn (O). Chứng minh:
a, BC song song với DE
b, Tứ giác BCED là hình thang cân
a, HS tự chứng minh
b, Ta chứng minh được B E ⏜ = C D ⏜ từ đó suy ra BE = CD và tứ giác BDEC là hình thang cân
Cho tam giác ABC có ba góc nhọn nội tiếp (O;R) đường cao AH của tam giác cắt đường tròn tâm O tại D . Từ D vẽ đường thẳng song song với BC cắt đường tròn O tại E .CM : BCED là hình thang cân
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O) có đường kính AD và AH vuông góc với BC tại H, tia AH cắt (O) ở E. Chứng minh tứ giác BCDE là hình thang cân.
Vì góc AED chắn nửa đường tròn tâm O ( AD )
=> \(\widehat{AED}=90^0\)
=> AE \(\perp\)AD hay AH \(\perp\)ED
Mà AH \(\perp\)BC
=> ED // BC
Vì góc ACD chắn nửa đường tròn => \(\widehat{ACD}=90^0\)
Ta có : \(\widehat{BEA}=\widehat{BCA}\)
Mặt khác : \(\widehat{BEA}+\widehat{EBC}=90^0;\widehat{BCA}+\widehat{BCD}=90^0\)
=> \(\widehat{EBC}=\widehat{BCD}\)
Xét hình thang BCDE ( ED // BC ) có :
\(\widehat{EBC}=\widehat{BCD}\)(hai góc cùng kề cạnh BC )
=> BCDE là hình thang cân
giả sử tam giác ABC là tam giác nhọn nội tiếp đường tròn (O) đường cao AH cat91 đường tròn (o) tại D kẻ đường kính AE của đường tròn (o) chứng minh
A BC song song với DE
B tứ giác BCED là hình thang cân
các bạn giúp mình với mình cảm ơn nhiều lắm các bạn giải chi tiết hộ mình
cho tam giác nhọn abc nội tiếp đường tròn tâm O.Đường cao AH cắt đường tròn tại I.Gọi AD là đường kính của đường tròn O.Tia phân giác góc BAC cắt đường tròn tại M.CMR:
a,OM vuông góc với BC
b,AM là tia phân giác của góc IAD
c,ID song song BC
a: AM là phân giác của góc BAC
=>BM=CM
mà OB=OC
nên OM là trung trực của BC
=>OM vuông góc BC
b: Xét ΔHBA vuông tại H và ΔCDA vuông tại C có
góc HBA=góc CDA
=>ΔHBA đồng dạng với ΔCDA
=>góc BAH=góc DAC
=>góc IAM=góc DAM
=>AM là phân giác của góc IAD
c: AM là phân giác của góc IAD
nên sđ cung IM=sđ cung MD
=>IM=MD
=>OM là trung trực của ID
=>OM vuông góc ID
=>ID//BC
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Đường cao AH cắt đường tròn (O) tại D. Kẻ đường kính AE của đường tròn (O). Chứng minh:
a) BC // DE.
b) Tứ giác BCED là hình thang cân.
a) Từ O kẻ OM vuông góc với AD
Khi đó theo tính chất của đường kính và dây cung thì M là trung điểm AD
Lại có O là trung điểm AE => MO là đường trung bình của tam giác ADE
=> MO // DE , lại có MO // BC (cùng vuông góc với AD)
=> DE // BC
b) Tứ giác ABDC nột tiếp đường tròn (O)
=> \(\widehat{ADB}=\widehat{BCA}\Leftrightarrow90^0-\widehat{ADB}=90^0-\widehat{BCA}\Rightarrow\widehat{CBD}=\widehat{ECB}\)
Lại có từ phần a, BED là hình thang vì có BC // DE
=> BCED là hình thang cân
a, Xét ΔADE nội tiếp đường tròn đường kính AE
=> AD ⊥ DE (1)
LẠi có AH ⊥ BC = > AD ⊥ BC (2)
Từ (1) và (2) => DE // BC ( cùng vuông góc với AD) (*)
b, Ta có: Tứ giác ABDC nội tiếp
=> =
Lại có : + = + ( cùng bằng 90 độ)
=> = (**)
Từ (*) và (**) => BCED là hình thang cân
a) Xét (O) có : AE đường kính (GT) và D ϵ (O) ⇒ Δ ADC vuông tại D
⇒ AD vuông góc với DE tại D. Mà BC vuông góc với AD tại H (GT)
⇒ BC // DE ( theo định lí từ vuông góc đên song song )
b) CM dễ dàng △ AEC vuông tại C.
Xét (O) có : góc DBC = góc DAC ( vì 2 góc nội tiếp cùng chắn cung CD ) (1)
Mà góc DAC + góc ACB = 90 độ ( △AHC vuông tại H )
góc BCE + góc ACB = 90 độ ( △AEC vuông tại C )
⇒ góc DAC = góc BCE (2)
Từ (1) và (2) ⇒ góc DBC = góc BCE.
Xét hình thang BCED (vì BC // ED) có ; góc DBC = góc BCE (cmt)
⇒ BCED là hình thang cân,
Cho tam giác ABC nội tiếp đường tròn tâm O, đường cao AH cắt (O) tại D. Kẻ đường kính AE.CMR: a, BCsong song DE b, Tứ giác BCED la hình thang cân
Cho tam giác ABC có ba góc nhọn nội tiếp (O;R) đường cao AH của tam giác cắt đường tròn tâm O tại D . Từ D vẽ đường thẳng song song với BC cắt đường tròn O tại E
a CMR O, A,E thẳng hàng
b, CMR BCED thang cân
c, Tính \(AB^2+AC^2+CD^2+BD^2\)
a) ta có: \(OD=OE=OA=\frac{1}{2}AE\)( bán kính đường tròn)
mà \(D\in\left(O;R\right)\)( giả thiết \(AH\)cắt \(\left(O;R\right)\)tại \(D\))
xét \(\Delta ADE\) có \(OD\) \(=\frac{1}{2}AE\)
\(\Rightarrow OD\) là đường trung tuyến ứng với cạnh \(AE\)
\(\Rightarrow\Delta ADE\) là \(\Delta\)vuông tại \(D\)
\(\Rightarrow AE\) là cạnh huyền trong tam giác vuông
ta cũng có \(O\)nằm giữa \(A,E\)( tâm đường tròn )
\(\Rightarrow A,O,E\) thẳng hàng