Cho ( O) nội tiếp tam giác ABC các tiếp điểm trên AB , BC AC lần lượt là M , N , S
CMR : a . AB+AC-BC = 2AM
Cho ( O) nội tiếp tam giác ABC các tiếp điểm trên AB , BC AC lần lượt là M , N , S
CMR : a . AB+AC-BC = 2AMư
b .cho AB= 3 BC=4 AC=5 tính AM BM CS
Cho đường tròn (O) nội tiếp tam giác ABC và các tiếp điểm trên cạnh AB,BC,CA lần lượt là M,N và S
a)Chứng minh AB+AC-BC=2AM
Cho tam giác ABC có AB > AC > BC. trên các cạnh AB, AC lấy lần lượt hai điểm M và N Sao cho BM = BC = CN. Gọi I là tâm đường tròn nội tiếp tam giác ABC. AI cắt đường tròn ngoại tiếp các tam giác ANM và ABC lần lượt tại E và F.
a) Chứng minh tứ giác AMIC nội tiếp.
b) So sánh IE và IF
Cho tam giác ABC (AC>AB). Đường tròn tâm I nội tiếp tam giác đó và tiếp xúc với AB,BC tại D,E. Gọi M,N lần lượt là trung điểm AC,BC. Gọi K là giao điểm của MN và AI. CMR: 4 điểm I,E,K,C cùng nằm trên một đường tròn
Cho tam giác ABC nội tiếp đường tròn (O), D là 1 điểm trên cạnh BC. Gọi M,N lần lượt là trung điểm các cạnh AB,AC. Đường thẳng MN cắt (O) tại các điểm P,Q (P,Q lần lượt thuộc cung AB và cung AC). Đường tròn ngoại tiếp tam giác BDP cắt AB tại I. Các đường thẳng DI và AC cắt nhau tại K.
a) C/m: Tứ giác AIPK nội tiếp và \(\frac{PK}{PD}=\frac{QB}{QA}\)
b) Đường thẳng CP cắt đường tròn ngoại tiếp tam giác BDP tại G (khác P). Đường thẳng IG cắt đường thẳng BC tại E. Cmr khi D di chuyển trên BC thì \(\frac{CD}{CE}\)không đổi.
bạn ưi đề sai ạ mk ko vẽ hik đc
bạn xem lại đề hộ vs ạ
Cho tam giác ABC nội tiếp đường tròn (O), D là 1 điểm trên cạnh BC. Gọi M,N lần lượt là trung điểm của các cạnh AB,AC. Đường thẳng MN cắt (O) tại các điểm P,Q (P,Q lần lượt thuộc cung AB và cung AC). Đường tròn ngoại tiếp tam giác BDP cắt AB tại I. Các đường thẳng DI và AC cắt nhau tại K.
a) C/m: AIPK nội tiếp và \(\frac{PK}{PD}=\frac{QB}{QA}\)
b) Đường thẳng CP cắt đường tròn ngoại tiếp tam giác BDP tại G. Đường thẳng IG cắt đường thẳng BC tại E. Cmr; Khi D di chuyển trên BC thì \(\frac{CD}{CE}\)không đổi
cho tam giác nhọn abc ( ab < ac ) nội tiếp đường tròn (o) đường kính ad. tiếp tuyến tại d của đường tròn (o) cắt tia bc tại s. tia so cắt ab,ac lần lượt tại m,n. gọi h là trung điểm của bc. chứng minh: om=on
Cho tam giác ABC nội tiếp (O) có đường kính AB ( AC< BC). Trên dây BC lấy điểm \(H\ne B\)và \(H\ne C\). AH cắt (O) tại D. Kẻ HQ vuông góc AB (\(Q\in AB\)) Đường thẳng CQ cắt (O) tại F.
a, CMR tứ giác ACHQ là tứ giác nội tiếp.
b, Gọi M,N lần lượt là hình chiếu của F trên AC và BC. CMR MN, AB ,DF đồng quy.
b/ Gọi G là giao điểm của AB và DF
Ta có :
Góc ACQ = góc AHQ ( t/g ACHQ n.t )
Góc ACQ = góc ADF ( 2 góc n.t chắn cung AF )
=> Góc AHQ = góc ADF
Mà 2 góc ở vị trí đồng vị
Nên \(HQ//DF\)
Mặc khác \(HQ\perp AB\)tại Q
=> \(DF\perp AB\)tại G
Xét tứ giác GBNF ta có:\(B\widehat{G}F+B\widehat{N}F=180^0\)
=> Tứ giác GBNF nội tiếp =>\(N\widehat{G}F=N\widehat{B}F\)
Mà \(N\widehat{B}F=C\widehat{A}F\)( tứ giác ACBF n.t (O))
Nên \(N\widehat{G}F=C\widehat{A}F\left(1\right)\)
Xét tứ giác GMAF ta có: \(A\widehat{M}F=A\widehat{G}F\left(=90^0\right)\)
=> Tứ giác GMAF n.t =>\(M\widehat{A}F+M\widehat{G}F=180^0\left(2\right)\)
(1) và (2) => \(N\widehat{G}F+M\widehat{G}F=180^0\)
=> \(\overline{M,G,N}\)
Mà G là giao điểm của AB và DF
Nên MN,AB,DF đồng quy tại G
MN là đường thẳng simson nha bạn
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS. b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng. c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN