cho tứ giác ABCD, E là giao điểm của AB và CD, F là giao điểm của AD và BC, phân giác của góc E và góc F cắt nhau tại I.CMR:
a) \(\widehat{EIF}=\left(\widehat{BAD}+\widehat{BCD}\right):2\)
b) Tổng 2 đường chéo lớn hơn tổng 2 cạnh đối.
cho tứ giác abcd, e là giao điểm của các đường thẳng ab và cd, f là giao điểm của các đường thẳng bc và ad. Các tia phân giác của góc e và góc f cắt nhau tại i. Chứng minh góc eif=\(\frac{1}{2}\)(góc bad+góc bcd)
Cho tứ giác ABCD. E là giao điểm của AB và CD. F là giao điểm của BC và AD. Các tia phân giác của góc E và F cắt nhau tại I
CMR:
a, Nếu góc BAD= 1300 , góc BCD= 500 thì IE vuông góc với IF
b, Góc EIF bằng nửa tổng của 1 trong 2 cặp góc đối của tứ giác ABCD
Cho tứ giác ABCD có E là giao điểm của hai đường thẳng AB và CD; F là giao điểm của hai đường thẳng BC và AD. Các tia phân giác của góc E và F cắt nhau tại F. Chứng minh rằng:
a) Nếu góc BAD= 130 độ; góc BCD= 50 độ thì IE vuông góc với IF
b) Góc EIF bằng nửa tổng của 1 trong 2 cặp góc đối của tứ giác ABCD
Tứ giác ABCD có 2 góc đối \(\widehat{A}+\widehat{C}=180^o\)
E là giao điểm của AD và BC. F là giao điểm của AB và CD . Tia phân giác của góc E cắt AB và CD ở M và N . Tia phân giác của góc F cắt AD và BC ở H và K . CHứng minh răng : MHNK là hình thoi .
Cho tứ giác ABCD. E là giao điểm CD. F là giao điểm của BC và AD. Các tia phân giác của góc E và F cắt nhau tại I
CMR:
a, Nếu góc BAD= 1300 , góc BCD= 500 thì IE vuông góc với IF
b, Góc EIF bằng nửa tổng của 1 trong 2 cặp góc đối của tứ giác ABCD
Giúp mk đi. Ai có câu trả lời đúng đầu tiên sẽ có **** từ mk. ( cả 2 phần nha!)
cho tứ giác ABCD , E là giao điểm AB và CD, F là giao điểm BC và AD. Các tia phân giác E và F cắt nhau ở I. CMR
a) EIF=(BAD+BCD):2
b)Nếu BAD=130, BCD=50 thì IE vuông góc IF.
cho hình tứ giác ABCD, E là giao điểm của các đường thẳng AB và CD, F là giao điểm của các đường thẳng BC và AD. Các tia phân giác của góc E và F cắt nhau ở I. CMR:
a, Nếu góc BAD=130 độ, góc BCD= 50 độ thì IE vuông góc với IF.
b, Góc EIF bằng nửa tổng của một trong hai cặp góc đối của tứ giác ABCD.
cho hình tứ giác ABCD, E là giao điểm của các đường thẳng AB và CD, F là giao điểm của các đường thẳng BC và AD. Các tia phân giác của góc E và F cắt nhau ở I. CMR:
a, Nếu góc BAD=130 độ, góc BCD= 50 độ thì IE vuông góc với IF.
b, Góc EIF bằng nửa tổng của một trong hai cặp góc đối của tứ giác ABCD
cho tứ giác ABCD, E là giao điểm của AB và CD. F là giao điểm của BC và AD. Các tia phân giác của góc E và góc F cắt nhau tại I. Chứng minh rằng : nếu góc BAD=130^o, góc BCD=50^o thì IE song song với IF
cho tứ giác ABCD, E là giao điểm của các đường thẳng ABvàCD, F là giao điểm của các đường thẳng BC và AD. Các tia phân giác của các góc E và F cắt nhau tại I> chứng minh rằng:
a, Nếu góc BAD= 130 độ, góc BCD = 50 độ thì IE vuông góc với IF
b, góc EIF bằng nửa tổng của một trong hai cặp góc đối của tứ giác ABCD