Cho tứ giác ABCD có AD=BC, 2 cạnh AD và BC không song song với nhau. M, N lần lượt là trung điểm của AB và CD. Đường thẳng AD cắt MN tại E, đường thẳng BC cắt MN tại F. Chứng minh rằng góc AEM=góc BFM.
Cho tứ giác ABCD biết \(\widehat{C}+\widehat{A}=\)∝ .Biết AC và AD cắt nhau ở E , AB và CD cắt nhau ở F . Các tia phân giác của E và F cắt nhau tại I . Tính góc EIF theo ∝
Cho ΔABC nhọn, đường cao AD và BE cắt nhau tại H. Đường thẳng vuông góc với AD tại A và đường thẳng vuông góc với BD tại B cắt nhau tại F.
a. Tứ giác AFBD là hình gì? Vì sao?
b. Gọi K là giao của AB và DF, I là trung điểm HC. Chứng minh E và D đối xứng với nhau qua KI
Cho tam giác ABC vuông tại A (AB<AC),E là trung điểm của BC.Kẻ EF vuông góc với AB tại F, ED vuông góc với AC tại D. Gọi O là giao điểm của AE và DF
a)Chứng minh tứ giác ADEF là hình chữ nhật
b)Gọi K là điểm đối xứng của E qua D. Chứng minh tứ giác AECK là hình thoi
c)Kẻ EM vuông góc với AK tại M. Chứng minh DM⊥MF
d)Kéo dài BD cắt KC tại I, cho AB=3cm, AC=4cm. Tính độ dài đoạn KI
Bài 1: Cho hình bình hành ABCD. Trên cạnh AB, CD lấy lần lượt 2 điểm E và F sao cho AE=CF.
a) C/m AECF lầ hình bình hành.
b) Gọi M là giao điểm của DE và AF, N là giao điểm của CE và BF. C/m EMFN là hình bình hành.
c) C/m 4 đường thẳng AC, BD, MN, EF cắt nhau tại một điểm.
Note: Bài này chỉ cần chứng minh giùm mk ý c thui nhé! Còn lại mk bít làm hít rùi... hi hi!!!
Bài 2: Cho tứ giác ABCD có \(\widehat{A}\)\(=\widehat{B}\)\(=90^o\). Các tia DA và CB cắt nhau tại E. Các tia AB và DC cắt nhau tại F.
a) C/m \(\widehat{E}=\widehat{F}.\)
b) Tia phân giác của \(\widehat{E}\) cắt AB, CD theo thứ tự G và H. Tia phân giác của \(\widehat{F}\) cắt BC, AD theo thứ tự ở I và K. Cmr tứ giác GKHI là hình thoi.
Note: Bài này mình chỉ cần ý b thui nhé!!! THANKS MỌI NGƯỜI NHÌU NHA!!!
:Bài 1 : Cho tứ giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với 5; 8; 13 và 10.
a/ Tính số đo các góc của tứ giác ABCD
b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắtnhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giáccủa góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm củađoạn MN
Cho tứ giác ABCD có \(\widehat{A}+\widehat{C}=180^o\) và các cạnh đối cách nhau ở E và F. Tia phân giác \(\widehat{E}\) và \(\widehat{F}\) cắt nhau tại I. Tính \(\widehat{EIF}\) .
cho hình bình hành ABCD có K là trung điểm AB,I là trung điểm CD.BD lần lượt cắt AI và CK tại M và N. Gọi O là giao điểm của hai đường chéo AC và BD.
a)Tứ giác AKID,BKIC,AKCI là hình gì
b)c/m DM=MN=NB
c)I,O,K thằng hàng
d)AI cắt DK tại E,BI cắt CK tại F, c/m KEIF là hình bình hành và FE =AK