Cho x//y//z.Tính góc ABC,cho biết A1=130,C1=127
Hình vẽ cho biết x//y,A=90 độ ,C=130 độ
a) Đường thẳng AB có vuông góc với đường thẳng y không ?Vì sao ?
b) Tính C1;B1;Đ1
biết Ax //Cy góc ABC =?
Kẻ Bz//Ax//Cy
\(\Rightarrow\widehat{ABC}=\widehat{ABz}+\widehat{zBC}\\ =\left(180^0-\widehat{xAB}\right)+\left(180^0-\widehat{yCB}\right)\left(trong.cùng.phía\right)\\ =50^0+32^0=82^0\)
các đường thẳng Ax,By,Cz song song với nhau như hình vẽ:
a) Các góc A1 ,C1 có bằng nhau ko ? Vì sao?
b) tính C1 +CAx
c) tính C2 +CBy
d) tính CAx + CBy +ACB
e) nếu AB\(\perp\) By thì AB có vuông góc với Ax và Cz ko ? Vì sao ?
Cho
Y/-x+z=x+y/z=-x/y(x,y,z khác 0,x khác y, y khác z.tính x/y
cho 3 số x y z khác 0 với y+z-x/x=z+x-y/y=x+y-z/z.Tính giá trị M=(x+y)(y+z)(z+x)/xyz
Cho x+y+z=0 và x khác y khác z.Tính
\(A=\frac{x^2}{x^2-y^2-z^2}+\frac{y^2}{y^2-z^2-x^2}+\frac{z^2}{z^2-x^2-y^2}\)
\(B=\frac{1}{x^2+y^2-z^2}+\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+z^2-y^2}\)
Các bạn giúp mình nhanh với
Bài 1
Cho \(M=\frac{ax^2+bx+c}{a1^2+b1x+c1}\)
Chứng minh rằng: Nếu \(\frac{a}{a1}=\frac{b}{b1}=\frac{c}{c1}\) thì giá trị của m không phụ thuộc vào x khác 0
Bài 2
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) và \(a+b+c\ne0\)
Tính \(M=\frac{\left(19a+5b+1980c\right)^{2003}}{1914^{2003}\cdot a^{2001}\cdot b^2}\)
Bài 3
Cho \(\frac{a}{a'}+\frac{b}{b'}=1; \frac{c}{c'}=\frac{b}{b'}=1\)
Tính abc + a'b'c'
Bài 4
Cho biểu thức: \(A=\frac{x+y}{z+t}+\frac{z+y}{x+t}+\frac{z+t}{x+y}+\frac{x+t}{y+z}\)
Tính A biết rằng: \(\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{x+y+t}=\frac{t}{x+y+z}\)
Bài 5
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\). Tính giá trị biểu thức M
\(M=\frac{a^{2009}\cdot c^2}{b^{2001}}\)
Bài 6
Cho \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính:
\(a. A=\frac{5x+3y}{5y-4z}\)
\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)
\(c. C=\frac{2y-3z}{x+y+z}\)
Cần gấp không vậy bạn
Chiều mai mình nộp ạ
Câu 4 dùng tỉ lệ thức là ra bạn à
x+y+z=1/x+1/y+1/z.Tính x(1-yz)(y^2-xz)-y(1-xz)(x^2-yz)
Cho hình vẽ,biết x//y;A1=40*,B1=130*.Qua điểm O vẽ z//x
a)Vì sao z//y
b)Tính AOB