Đề bài: Chứng tỏ tổng của 3 số chẵn liên tiếp thì chia hết cho 6.
16. Chứng tỏ rằng:
a) Trong 2 số tự nhiên liên tiếp có một số chia hết cho 2.
b) Tổng ba số chẵn liên tiếp chia hết cho 6.
c) Tổng hai số chẵn liên tiếp không chia hết cho 4.
16. Chứng tỏ rằng:
a) Trong 2 số tự nhiên liên tiếp có một số chia hết cho 2.
b) Tổng ba số chẵn liên tiếp chia hết cho 6.
c) Tổng hai số chẵn liên tiếp không chia hết cho 4.
Chứng minh rằng:
a, tổng của ba số chẵn liên tiếp thì chia hết cho 6.
b, tổng của ba số lẻ liên tiếp không chia hết cho 6.
c, tổng của 5 số chẵn liên tiếp thì chia hết cho 10, còn tổng của 5 số lẻ liên tiếp thì chia 10 dư 5.
a) Gọi ba số chẵn liên tiếp là: a; a+2; a+4
Ta có: a+a+2+a+4=3a+6
Vì 6 chia hết cho 6=>3a+6 chia hết cho 6
=>tổng của ba số chắn liên tiếp chia hết cho 6
a.gọi 3 số tự nhiên liên tiếp lạ:
a;a+2;a+4(a thuộc n;a=2k)
có
a+a+2+a+4=3a+6=3.2k+6 chia hết cho 6
b.gọi 3 số lẻ liên tiếp là:
a+1,a+3;a+5(a thuộc n;a=2k)
có:a+5+a+1+a+3=3a+9=6k+9
=6k+9=6k+9 ko chi hết cho 6
c.gọi ......là:a,a+2,a+4;a+6;a+8(a thuộc n;a=2k)
a+a+2+a+4+a+6+a+8=5a+20=10k+20=10(k+2) chia hết cho 10=>đpcm
d.tương tự trên có
a+1+a+3+a+5+a+7+a+9=5a+25=10k+25=10k+20+5=10(k+2)+5 chia 10 dư 5=>đpcm
1, CMR: tổng của 3 số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp thì chia hết cho 5
2,CMR:
+ tổng của 3 số chẵn liên tiếp thì chia hết cho 6
+ tổng của 3 số lẻ liên tiếp thì không chia hết cho 6
+ tổng của 5 số chẵn liên tiếp thì chia hết cho 10 còn tổng của 5 số lẻ liên tiếp thì chia 10 dư 5
1.Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2
Có: a+(a+1)+(a+2)=a+a+a+1+2=3a+3=3(a+1)\(⋮\) 3
Vậy ...
Gọi 5 số tự nhiên liên tiếp là a, a+1, a+2,a+3,a+4
Có : a+(a+1)+(a+2)+(a+3)+(a+4)= a+a+a+a+a+1+2+3+4=5a+10=5(a+2)\(⋮\) 5
Vậy ...
2.
+)Gọi 3 số chẵn liên tiếp là a, a+2,a+4
Có : a+(a+2)+(a+4)=a+a+a+2+4=3a+6
mà a là số chẵn nên 3a \(⋮\) 6
\(\Rightarrow\) 3a+6\(⋮\) 6
Vậy ....
+) ngược lại ý đầu
+)Gọi 5 số chẵn liên tiếp là a, a+2,a+4 , a-2,a-4
Có : a+(a+2)+(a+4)+(a-2)+(a-4)=a+a+a+a+a+2+4-2-4=5a
mà a là số chẵn nên 5a \(⋮\) 10
\(\Rightarrow\) 5a\(⋮\) 10
Vậy ....
+) ngược lại ý 3
Chứng tỏ rằng
a) Tổng 3 số tự nhiên liên tiếp thì chia hết cho 3
b) Tổng của 5 số tự nhiên liên tiếp thì không chia hết cho 5
c) Tổng của 4 số tự nhiên liên tiếp thì không chia hết cho 4
d) Tổng của 6 số tự nhiên liên tiếp thì không chia hết cho 6
a) gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )
ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3
vậy tổng của 3 số liên tiếp chia hết cho 3
c) gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )
ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4 ( 6 ko chia hết cho 4 )
câu b); d) lam tuong tu cau c)
Bài toán vui: - Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3 - Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
Bài toán vui:
- Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
- Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
Đề bài:
a) Tổng của 3 số tự nhiên liên tiếp có chia hết cho 3 ko?
b) Tổng của 4 số tự nhiên liên tiếp có chia hết cho 4 ko?
c) Chứng tỏ rằng trong ba số tự nhiên liên tiếp có một số chia hết cho 3.
d) Chứng tỏ rằng trong bốn số tự nhiên liên tiếp có một số chia hết cho 4.
Giúp mik nhé!
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858
d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
a) Chứng tỏ rằng tích của 2 số chẵn liên tiếp chia hết cho 8.
b) Chứng tỏ rằng tích của 3 số tự nhiên liên tiếp chia hết cho 6
Chứng minh rằng:
a/ Tổng của 3 số chẵn liên tiếp thì chia hết cho 6
b/ Tổng của 3 số lẻliên tiếp thì chia cho 6 dư 3
a) Gọi 3 số chẵn liên tiếp là : a ; a+2 ; a+4
Ta có : a + a+2 + a+4 =3a +6
Mả 6 chia hết cho 6 nên 3a+6 chia hết cho 6
Vậy tổng của 3 số chẵn lt thì chia hết cho 6 (đpcm).
Gọi 3 số chẵn liên tiếp là : a ; a+2 ; a+4
Ta có : a + a+2 + a+4 =3a +6
Mả 6 chia hết cho 6 nên 3a+6 chia hết cho 6
Vậy tổng của 3 số chẵn lt thì chia hết cho 6 (đpcm).