Cho x-y=1 . Tinh X^3-y^3-3xy
cho x+y =1 . tinh gia tri cua bieu thuc A=x^3+y^3+3xy
chox-y=1. tinh gia tri cua bieu thuc B=x^3-y^3-3xy
cho x+y=1 . tinh gia tri cua bieu thuc C=x^3+y^3+3xy(x^2+y^2)+6x^2*y^2(x+y)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
cho x-y =1 . tinh x3-y3-3xy
x^3 - y^3 + 3xy = ( x - y)(x^2 + xy + y^2 ) = 1. ( x^2 + xy + y^2) + 3 xy = x^2 + y^2 - 2xy = ( x- y)^2
= 1^2 = 1
Ta có : x3 - y3 = ( x - y )3 + 3xy(x - y) = 1 +3xy
=> x3 - y3 - 3xy = 1 + 3xy - 3xy = 1
cho x-y =1 ,tinh gia tri bthuc
A=x3-y3-3xy
\(A=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
\(A=x^3-y^3-3xy\)
\(\left(x-y\right)^3=\left(x^2-2xy+y^2\right)\left(x-y\right)=x^3-2x^2y+xy^2-x^2y+2xy^2-y^3\)
\(=x^3-3x^2y+3xy^2-y^3\)
\(=x^3-y^3-3\left(x^2y-xy^2\right)\)
\(=x^3-y^3-3xy\left(x-y\right)\)
\(=x^3-y^3-3xy.1=x^3-y^3-3xy\)
=> \(A=x^3-y^3-3xy=\left(x-y\right)^3=1^3=1\)
Cho x - y = 7 . Tinh gia tri cua bieu thuc
a) M = x3 - 3xy . ( x - y ) - y3 - x2 + 2xy - y2
b) N = x2 . ( x + 1 ) - y2 . ( y - 1 ) + xy - 3xy . ( x - y + 1 ) - 95
a)\(M=\text{[}x^3-3xy\left(x-y\right)-y^3\text{]}-\left(x^2-2xy+y^2\right)\)
\(M=\left(x-y\right)^3-\left(x-y\right)^2\)
\(\Rightarrow M=7^3-7^2\)
\(M=294\)
tinh gia tri bieu thuc
C=x^3+y^3+3xy(x^2+y^2)+6x^2y^2(x+y) với x+y=1
nhanh nha mik tick cho
Cho x - y = 11. Tinh gia tri cua bieu thuc : M = x^3-3xy(x- y) - y^3 -x^2 + 2xy - y^2
Ta có: x^3 -3xy(x-y) -y^3 -x^2 + 2xy-y^2
= x^3 -y^3 - 3xy(x-y) -( x^2 -2xy+y^2)
= (x-y)(x^2+xy +y^2) - 3xy(x-y) -(x-y)^2
= (x-y)(x^2+xy+y^2 -3xy-x+y)
=11( x^2 -2xy+y^2 -x+y)
= 11[ (x-y)^2 -(x-y)]
= 11[ 11^2 -11]
= 11^3 -11^2=...
cho x+y=1.Tinh gia tri bieu thuc B=x3+3xy +y3 (bang 2 cach)
C1: \(B=x^3+3xy+y^3\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y-1\right)\)
Thay \(x+y=1\)ta được:
\(B=1^3-3xy\left(1-1\right)=1\)
C2: \(x+y=1\)\(\Rightarrow\)\(x=1-y\)
\(B=x^3+3xy+y^3=\left(1-y\right)^3+3\left(1-y\right)y+y^3\)
\(=1-3y+3y^2-y^3+3y-3y^2+y^3=1\)
a)Cho x+y=1.C/mrằng x^3+y^3=1-3xy
b)Cho x-y=1.C/m rằng x^3-y^3=1+3xy
\(a,\left(x^3+y^3\right)=\left(x+y\right)\left(x^2-xy+y^2\right)=x^2+2xy+y^2-3xy=\left(x+y\right)^2-3xy=1-3xy\left(ĐPCM\right)\)
\(b,x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=x^2-2xy+y^2+3xy=\left(x-y\right)^2+3xy=1+3xy\left(ĐPCM\right)\)
Cho x+y=1 tính N= x^3+y^3+3xy
x-y=1 Tính M = x^3-y^3-3xy
\(\left(x+y\right)^3=x^3+y^3+3x^2y+3xy^2\)
\(=>\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)\)
Mà x+y = 1
\(=>\left(x+y\right)^3=1\)
Vậy \(N=x^3+y^3+3xy=1\)
Câu b làm tương tự bạn nhé !!
a,\(\left(x^3+y^3\right)=x^3+y^3+3x^2y+3xy^2\)
\(\Rightarrow\left(x^3+y^3\right)=x^3+y^3+3xy\left(x+y\right)\)
\(x+y=1\)
\(\Rightarrow\left(x^3+y^3\right)=1\)
Vậy \(N=x^3+y^3+3xy=1\)
Bạn tự làm tiếp nha
BÀI 1:
\(N=x^3+y^3+3xy=x^3+y^3+3xy\cdot1\)
Thay (x + y) = 1 vào N, ta đc:
\(N=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)
BÀI 2: (Bạn làm tương tự)
\(M=x^3-y^3-3xy=x^3-y^3-3xy\left(x-y\right)=\left(x-y\right)^3=1\)