Cho tứ giác ABCD có M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA,CM. Chứng minh: MN//PQ và MN=PQ
cho tứ giác ABCD . gọi M,N,P,Q lần lượt là trung điểm của AB , AC,CD,DA .Chứng minh rằng MN//PQ và MN=PQ
cho tứ giác abcd, gọi m,n,p,q lần lượt là các trung điểm của ab,bc,cd,da. chứng minh:
a)mn//pq và mn=pq
b) tứ giác abcd thêm điều kiện nào nữa thì mn vuông góc mq
cho tứ giác abcd có m n p q lần lượt là trung điểm của ad ab bc cd.
chứng minh mn//ac và mn = 1 phần 2 ac
,chứng minh rằng mn=pq và mn//pq
a: Xét ΔBAC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình của ΔBAC
=>MN//AC và \(MN=\frac{AC}{2}\) (1)
Xét ΔCDA có
P,Q lần lượt là trung điểm của CD,DA
=>PQ là đường trung bình của ΔCDA
=>PQ//AC và \(QP=\frac{AC}{2}\) (2)
Từ (1),(2) suy ra MN=PQ
b: Ta có: MN//AC
PQ//AC
Do đó: MN//PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
Do đó: MNPQ là hình bình hành
cho tứ giác abcd . gọi m,n,p,q lần lượt là trung điểm của ab , ac,cd,da .chứng minh rằng a,mn//pq và mn=pq
b, 2MP<AC = BD
mk đang cần gấp
Bài 1 cho tứ giác ABCD, P,Q lần lượt là trung điểm của AD và BC,a chứng minh PQ hoặc AB AC 2,b tứ giác ABCD là hình thang PQ AB CD 2. Bài 2 cho hình thang ABCD, AB đáy lớn. M ,N,P,Q lần lượt là trung điểm của AD BC AC BD.a chứng Minh M N P Q thẳng hàng.b Cho AB a CD b với a b. Tính MN PQ.c Cm rằng nếu MP PQ QN thì a 2b
Cho tứ giác ABCD. Các điểm M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Nối MN, PQ, PQ, QM. Hãy chứng tỏ diện tích tứ giác MNPQ bằng ½ diện tích tứ giác ABCD.
ABCD là tứ giác có M, N, P, Q lần lượt là trung điểm của AB,BC,CD,DA.
1/C/m MN//PQ, MN=PQ
2/ Nếu cho thêm AB//CD, AC vuông góc BD thì có nhận xét gì về tứ giác ABCD
Bài 1 cho tứ giác ABCD, P,Q lần lượt là trung điểm của AD và BC,
a) chứng minh PQ< hoặc = AB+AC/2,
b) tứ giác ABCD là hình thang <=> PQ=AB+CD/2.
Bài 2: cho hình thang ABCD, AB đáy lớn. M ,N,P,Q lần lượt là trung điểm của AD BC AC BD.
a) chứng Minh M N P Q thẳng hàng.
b) Cho AB=a CD=b với a>b. Tính MN PQ.
c) Cm rằng nếu MP=PQ=QN thì a=2b