Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Việt Anh 5c
Xem chi tiết
nguyễn ngọc liên
Xem chi tiết
Lưu Hiền
15 tháng 3 2017 lúc 8:54

bạn xem cái m đầu tiên đi nhé, mình thấy nó sao sao ấy, mình sẽ làm kia cho bạn

đặt

\(\dfrac{a}{b}=\dfrac{c}{d}=n\\ < =>\left\{{}\begin{matrix}a=bn\\c=dn\end{matrix}\right.\)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\\ =\left(\dfrac{bn+b}{dn+d}\right)^2\\ =\left[\dfrac{b\left(n+1\right)}{d\left(n+1\right)}\right]^2\\ =\left(\dfrac{b}{d}\right)^2\left(1\right)\)

\(\dfrac{a^2+b^2}{c^2+d^2}\\ =\dfrac{\left(bn\right)^2+b^2}{\left(dn\right)^2+d^2}\\ =\dfrac{b^2n^2+b^2}{d^2n^2+d^2}\\ =\dfrac{b^2\left(n^2+1\right)}{d^2\left(n^2+1\right)}\\ =\dfrac{b^2}{d^2}\\ =\left(\dfrac{b}{d}\right)^2\left(2\right)\)

từ 1 và 2

=> \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

ko hiểu chỗ nào thì hỏi mình nhé, mình nói cho :)

chúc may mắn

đỗ kim tuyết
Xem chi tiết
viet ho nguyen
31 tháng 5 2016 lúc 20:16

ta có \(\frac{a}{b}=\frac{c}{d}\)nên \(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\)\(=\frac{a^2-b^2}{c^2-d^2}\)(tính chất dãy tỉ số bằng nhau)

mặt khác \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)(tính chất dãy tỉ số bằng nhau)=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)(tính chất dãy tỉ số bằng nhau)(đpcm)

Trần Hải Băng
Xem chi tiết
Trần Thị Loan
20 tháng 3 2015 lúc 16:08

trường hợp : ab = cd + 1 

ta có a+ b = c + d 

=> b.(a+b) = b(c+d) => a.b + b2 = bc + bd mà ab = cd + 1 nên 

cd + 1 + b2 = bc + bd => bc - cd + bd - b2 = 1 => c(b - d) + b.(d - b) = 1 => (c - b)(b - d) = 1 . Vì a, b, c, d nguyên nên c - b và b - d cũng nguyên. do đó c - b = b - d = 1 hoặc c - b = b -d = -1 

c - b = b - d => c + d = 2.b Mà c + d = a+ b => 2.b = a+ b => b = a => đpcm

Trường hợp 2: ab = cd - 1: tương tự

Le Thi Khanh Huyen
20 tháng 3 2015 lúc 16:27

Ta có:

\(a+b=c+d\)

\(\Rightarrow d=a+b-c\)

\(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)

Mà \(d=a+b-c\) nên ta có:

\(ab-c.\left(a+b-c\right)=1\)

\(\Rightarrow ab-ac-bc+c^2\)

\(\Rightarrow a\left(b-c\right)-c\left(b-c\right)=1\)

\(\Rightarrow\left(a-c\right)\left(b-c\right)=1\)

\(\Rightarrow a-c=b-c\)

\(\Rightarrow a=b\)

Phạm Văn Toản
19 tháng 4 2016 lúc 9:09

bai nay kho that

Lê Phương Thảo
Xem chi tiết
Cô nàng bão
Xem chi tiết
trung vlogs thành
Xem chi tiết
I don
17 tháng 10 2018 lúc 7:36

a) ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{c}{d}=\frac{2a+c}{2b+d}=\frac{2a-c}{2b-d}\Rightarrow\frac{2a+c}{2a-c}=\frac{2b+d}{2b-d}\)

b) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

=> đ p c m

c) tương tự như phần b nha bn\

dinh huong
Xem chi tiết
Ánh Dương Nguyễn Thị
Xem chi tiết