Cho Tam Giác ABC cân tại A vẽ đường cao AH . Kẽ HI , HK lần lượt vuông góc với AB và AC . Biết AB=6cm , BC=10cm . Tính BI,HK,IK
Cho tam giác ABC cân tại A và đường cao AH .Kẻ HI , HK lần lượt vuông góc với AB, AC .Biết AB=6cm , BC=10cm . Tính BI,HK và IK
Vẽ hình giúp mình với nha
Mình sẽ tích cho
Cho tam giác ABC cân tại A có đường cao AH. Kẻ HI và HK vuông góc với AB và AC biết AB= 10cm, BC=12cm. Tính BI,HK,IK
1. Cho tam giác ABC nhọn, H là trực tâm. Trên BH lấy điểm M, trên CH lấy điểm N sao cho AM vuông góc vs CM, AN vuông góc với BN. Chứng minh tam giác AMN cân.
2.Cho tam giác ABC cân, đường cao AH. Kẻ HI,HK lầ lượt vuông góc với AB, AC tại I và K. Biết AB= 6cm, BC=10cm. Tính BI, HK và IK.
Bài tập 11: Cho tam giác nhọn ABC có đường cao AH. Kẻ HI, HK lần lượt vuông góc với AB, AC (I thuộc AB, K thuộc AC). Biết AH = 6cm, BH = 2cm, BC = 8cm. a) Tính AB, AC b) Tính HI, HK c) Tính chu vi tứ giác AIHK.
a: Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=6^2+2^2=40\)
hay \(AB=2\sqrt{10}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=6^2+6^2=72\)
hay \(AC=6\sqrt{2}\left(cm\right)\)
Cho tam giác ABC vuông tại A,có đường cao AH.Từ H vẽ HI vuông góc với AB tại I và HK vuông góc với AC tại K.Gọi AM là trung tuyến tam giác ABC
a)BIết AB=3cm,AC-4cm.Tính BC,AH,BI
b)CHứng minh IK=AH và AM vuông góc IK
c)CHứng minh AB.AI=AC.AK và tam giác AIK và ACB đồng dạng
Cần gấp,mong mn giúp đỡ ak!!!
Cho tam giác ABC cân A có AC=10cm, BC=12cm. Kẻ AH vuông góc với BC tại H.
a, Chứng minh: HB=HC
b, Tính độ dài AH.
c, Kẻ HI vuông góc AB tại I, HK vuông góc với AC tại K. Chứng minh tam giác HIK cân.
d, Chứng minh: IK//BC.
Vẽ hình nữa ạ (ko có cũng được ạ)
Xét \(\Delta ABH\)và \(\Delta ACH\)có:
\(AB=AC\)( \(\Delta ABC\)cân tại A )
AH là cạnh chung
\(\widehat{AHB}=\widehat{AHC}\left(=90^0\right)\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(ch.gn\right)\)
\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )
b) Vì \(HB=HC\left(cmt\right)\)
\(\Rightarrow HB=HC=\frac{12}{2}=6cm\)
Xét \(\Delta ACH\left(\widehat{H}=90^0\right)\) có:
\(AC^2=AH^2+CH^2\)( định lý py-ta-go )
\(\Rightarrow10^2=AH^2+6^2\)
\(\Rightarrow AH^2=10^2-6^2\)
\(\Rightarrow AH^2=64\)
\(\Rightarrow AH=\sqrt{64}\)
\(\Rightarrow AH=8cm\)
Vậy \(AH=8cm\)
Cho tam giác ABC cân tại A. Đường thẳng d đi qua A và d//BC. Kẻ AH vuông góc BC( H
thuộc BC); Kẻ HI vuông góc với AB( I thuộc AB), Tia HI cắt d tại E. Kẻ HK vuông góc với AC( K
thuộc AC), Tia HK cắt d tại D.
a/ Chứng minh: HI=HK và AI= AK
b/ Chứng minh: EHD cân tại H.
c/ Nối E với B, D với C. Chứng minh EB= DC
cho tam giác cân ABC cân tại A. Đường cao AH. kẻ HI, HK lần lượt vuông góc với AB, Ac tại I và K. Biết AB=6cm, BC=10cm. tính BI, HI, HK
bài này dùng tam giác đồng dạng nhưng chưa học, giải giúp với
cho tam giác ABC nhọn (AB < AC), các đường cao AE,BF cắt nhau tại H. gọi M là trung điểm của BC, qua H vẽ đường thẳngA vuông góc với HM, a cắt AB,AC lần lượt tại I ,K. Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH,AB theo thứ tự tại N và D. chứng minh NC=ND,HI=HK