Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Thi Khanh Huyen
Xem chi tiết
Hà Bảo Linh
Xem chi tiết
Minh Triều
12 tháng 10 2015 lúc 20:56

Giả sử \(\sqrt{15}\) là số hữu tỉ

=>\(\sqrt{15}=\frac{m}{n}\left(\text{phân số tối giản}\right)\)

=>m=\(\sqrt{15}\).n

=>m2=15n2

=>m2 chia hết cho 15 

=>m chia hết cho 15

Đặt m=15k

=>m2=225k2

=>225k2=15.n2

=>n2=15k2

=>n2 chia hết cho 15

=> n chia hết cho 15 

ta thấy m và n cùng chia hết cho 15 =>m/n chưa tối giản

=>trái giả thiết

=>\(\sqrt{15}\)là số vô tỉ

TXT Channel Funfun
Xem chi tiết
Lê Nhật Khôi
8 tháng 11 2017 lúc 19:56

Nếu \(\sqrt{2}\)là số hữu tỉ thì

Ta có\(\sqrt{2}=\frac{a}{b}\)

\(\Rightarrow2=\left(\frac{a}{b}\right)^2=\frac{a^2}{b^2}\)

Suy ra được \(a^2=2b^2\)

Đặt \(a=2k\)

Suy ra \(\left(2k\right)^2=2b^2=2k^2\)

Suy ra b là số chẵn

Suy ra a,b ko phải là 2 số nguyên tố cùng nhau 

Suy ra Giả sử sai

Vậy \(\frac{a}{b}\)là số vô tỉ

ST
8 tháng 11 2017 lúc 19:50

Giả sử \(\sqrt{2}\) là số hữu tỉ

\(\Rightarrow\sqrt{2}=\frac{a}{b}\left(a,b\in Q;b\ne0;\left(a,b\right)=1\right)\)

\(\Rightarrow2=\frac{a^2}{b^2}\Rightarrow a^2=2b^2\)

Vì \(\frac{a}{b}\)là số hữu tỉ \(\Rightarrow a^2⋮2\Rightarrow a⋮2\left(1\right)\)

=> a = 2k (k thuộc Q) => a2 = 4k2

Ta có: a2 = 2b2 => 4k2 = 2b2 => 2k2 = b2 => \(b^2⋮2\Rightarrow b⋮2\) (2)

Từ (1) và (2) => (a,b) khác 1 => trái với giả sử

Vậy...

kaneki_ken
8 tháng 11 2017 lúc 19:55

giả sử √2 là số hữu tỉ đặt  √2 = m/n  ( ước chung lớn nhất của m,n=1)

                                       => √2 n = m

                                        => 2n=m2

                                         => m2\(⋮\)2

                                         => m\(⋮\)2 => m2\(⋮\)4

                                          => 2n2\(⋮4\)=> n2\(⋮\)2=> n\(⋮\)2

                                            => 2 là 1 ước của m,n (trái đk UCLN(m,n)=1)

                                              => √2 là số vô tỉ

                         

                                                            

Tuan Nguyen
Xem chi tiết
Gia Huy
11 tháng 7 2023 lúc 19:00

Giả sử \(2\sqrt{2}+\sqrt{3}=x\left(x\in Q\right)\)

\(\Leftrightarrow\left(2\sqrt{2}+\sqrt{3}\right)^2=x^2\\ \Leftrightarrow11+4\sqrt{6}=x^2\\ \Leftrightarrow\sqrt{6}=\dfrac{x^2-11}{4}\)

Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{x^2-11}{4}\) là số vô tỉ \(\Rightarrow\) \(x^2\) là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)

Vậy \(2\sqrt{2}+\sqrt{3}\) là số vô tỉ

Giả sử \(\sqrt{3}-\sqrt{2}=x\left(x\in Q\right)\)  

\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^2=x^2\\ \Rightarrow5-2\sqrt{6}=x^2\\ \Rightarrow\sqrt{6}=\dfrac{5-x^2}{2}\)

Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{5-x^2}{2}\Rightarrow\) \(x^2\)là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)

Vậy \(\sqrt{3}-\sqrt{2}\) là số vô tỉ

Lilian Art
Xem chi tiết
Khanh Nguyễn Ngọc
10 tháng 9 2020 lúc 16:16

a) Bằng phản chứng giả sử \(\sqrt{2}\)là số hữu tỉ

---> Đặt \(\sqrt{2}=\frac{a}{b}\)với ƯCLN(a,b)=1 (tức là a/b tối giản), a,b>0

\(\Rightarrow b\sqrt{2}=a\Rightarrow2b^2=a^2\Rightarrow a^2\)là số chẵn \(\Rightarrow a\)là số chẵn

Đặt \(a=2k\Rightarrow b\sqrt{2}=2k\Rightarrow2b^2=4k^2\Rightarrow b^2=2k^2,k\inℕ\)

\(\Rightarrow b^2\)là số chẵn\(\Rightarrow b\)là số chẵn

Vậy \(2\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết--->đpcm

b) Bằng phản chứng giả sử \(3\sqrt{3}-1\)là số hữu tỉ

---> Đặt \(3\sqrt{3}-1=\frac{a}{b}\)với ƯCLN(a,b)=1 và a,b>0

\(\Rightarrow3b\sqrt{3}=a+b\Rightarrow27b^2=\left(a+b\right)^2\Rightarrow\left(a+b\right)^2⋮9\Rightarrow a+b⋮3\)

Đặt \(a+b=3k,k\inℕ\Rightarrow a=3k-b\Rightarrow\frac{3k-b}{b}=3\sqrt{3}-1\Rightarrow\frac{3k}{b}=3\sqrt{3}\)

\(\Rightarrow k^2=3b^2\Rightarrow k^2⋮3\Rightarrow k⋮3\)---> Đặt \(k=3l,l\inℕ\Rightarrow a=9l-b\Rightarrow\frac{9l-b}{b}=3\sqrt{3}-1\Rightarrow\frac{9l}{b}=3\sqrt{3}\)

\(\Rightarrow b^2=3l^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)

\(\Rightarrow3\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết---> đpcm

(Bài dài quá, giải mệt vler !!)

Khách vãng lai đã xóa
♥๖Lan_Phương_cute#✖#girl...
Xem chi tiết
Fudo
20 tháng 10 2019 lúc 19:33

                                                      Bài giải

a, Ta có :

\(\sqrt{2}\) là số vô tỉ \(\Rightarrow\) \(7-\sqrt{2}\) là số vô tỉ

b, Ta có :

\(\sqrt{5}\)là số vô tỉ \(\Rightarrow\sqrt{5}+24\) là số vô tỉ

Khách vãng lai đã xóa
Fudo
22 tháng 10 2019 lúc 21:08

♥๖Lan_Phương_cute#✖#girl_học_đường๖ۣۜ💋:))♥。◕‿◕。

chứng minh them \(\sqrt{2}\)\(\sqrt{5}\) là số vô tỉ nữa ! Vào đây tham khảo :

https://olm.vn/hoi-dap/detail/227642288657.html

Khách vãng lai đã xóa
gì cũng được
Xem chi tiết
Lại Quốc Bảo
Xem chi tiết
Nguyễn Minh Đăng
5 tháng 10 2020 lúc 21:50

Ta có: \(\sqrt{5}\) là 1 số vô tỉ

=> \(2+\sqrt{5}\) là 1 số vô tỉ

=> \(\sqrt{2+\sqrt{5}}\) là số vô tỉ

=> đpcm

Khách vãng lai đã xóa
KCLH Kedokatoji
5 tháng 10 2020 lúc 22:07

Giả sử \(\sqrt{2+\sqrt{5}}=q\left(q\inℚ\right)\)

\(\Rightarrow2+\sqrt{5}=q^2\inℚ\)

\(\Leftrightarrow\sqrt{5}=q-2\inℚ\)(Vô lý vì \(\sqrt{5}\in I\))

Vậy điều giả sử là sai hay \(\sqrt{2+\sqrt{5}}\)là số vô tỉ

Khách vãng lai đã xóa
Huỳnh Hướng Ân
Xem chi tiết
fan FA
13 tháng 8 2016 lúc 15:01

Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.

Gọi a+b=c trong đó a,c là số hữu tỉ và b là số vô tỉ ⇒⇒ b=c-a mà a và c là các số hữu tỉ ⇒⇒ a-c là số hữu tỉ ⇒⇒ b là số hữu tỉ(trái giả thiết). Vậy giả sử sai⇒⇒ đpcm

Võ Thạch Đức Tín 1
4 tháng 9 2016 lúc 9:54

Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.

Gọi a+b=c trong đó a,c là số hữu tỉ và b là số vô tỉ ⇒⇒ b=c-a mà a và c là các số hữu tỉ ⇒⇒ a-c là số hữu tỉ ⇒⇒ b là số hữu tỉ(trái giả thiết). Vậy giả sử sai⇒⇒ đpcm

dang hanh linh
2 tháng 8 2020 lúc 10:39

giả sử này là sai

Khách vãng lai đã xóa
Vi Linh Chi
Xem chi tiết
o0o I am a studious pers...
5 tháng 8 2016 lúc 15:49

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

Minh Thư
8 tháng 10 2019 lúc 20:53

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

Thi Bùi
17 tháng 7 2021 lúc 18:25

phản chứng : giả sử tất cả thuộc Q a đặt a= căn 2+ căn 3(a thuộc Q) . bình phương 2 vế ta có a^2=5+2 căn 6=> căn 6 = a^2-5/2 thuộc Q => vô lí

b đặt căn 2 + căn 3 + căn 5 = a. chuyển căn 5 sang vế a bình phương lên ta có 2 căn 6=a^2-2 căn 5 a

bình phương 1 lần nữa =>căn 5= a^4+20a^2-24/4a^3 thuộc Q => vô lí

c bình phương lên => căn 2=A-1 thuộc Q => vô lí

d tương tự căn 3=Bn-mn thuộc Q => vô lí

chúc bạn học tốt

Khách vãng lai đã xóa