Chứng minh rằng ( n thuộc Z)
a, (n+1)+2n(n+1) chia hết cho 6
b, (2n-1)3-(2n-1) chia hết cho 8
Chứng minh rằng :
a) n .(2n - 3) - 2n .( n+1 ) chia hết 5 với n thuộc Z
b) (n-1) . ( n+4 ) - ( n-4 ) . (n+1 ) chia hết cho 6 với n thuộc Z
a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)
\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z
b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)
\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z
a, Chứng minh rằng với mọi m thuộc Z ta luôn có m3 - m chia hết cho 6 .
b, Chứng minh rằng với mọi n thuộc Z ta luôn có ( 2n - 1 ) - 2n + 1 chia hết cho 8
a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi
công thanh sai rồi số nguyên chứ đâu phải số tự nhiên
Chứng minh rằng với mọi n thuộc Z thì:
a) n (2n - 3) - 2n (n + 1) chia hết cho 5
b) (n-1) (n+4) - (n-4) (n+1) chia hết cho 6
Chứng minh rằng n thuộc Z
\(a,\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
\(b,\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
\(b.\)\(\left(2n-1\right)^3-\left(2n-1\right)=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(\text{Áp dụng hằng đẳng thức }\)\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(=\left(2n-1\right)\left(2n-2\right).2n=\left(2n-1\right).2\left(n-1\right).2n\)
\(=\left(2n-1\right).4.n\left(n-1\right)\)
\(n\left(n-1\right)⋮2\)(vì là tích 2 số liên tiếp)
\(\Rightarrow\left(2n-1\right).4.n\left(n-1\right)⋮\left(4.2\right)=8\)
\(\left(2n-1\right).4.n\left(n-1\right)⋮8\RightarrowĐPCM\)
Chứng minh rằng :
a) (2n-1)³ - 2n - 1 chia hết cho 8
b) n²×(n - 1) - 2n×(n - 1) chia hết cho 6
Câu a hình như sai đề
b. n^2(n-1) - 2n(n-1) = (n^2-2n)*(n-1) = n(n-2)(n-1)
Nhận thấy n,n-1,n-2 là 3 số tn liên tiếp -> có 1 số chia hết cho 2 và 1 số chia hết cho 3 mà (2,3) = 1 -> chia hết cho 2*3 = 6
Chứng minh rằng:
a, n(2n-3) - 2n(n+1) chia hết cho 5 với mọi n thuộc Z
b, (n-1)(3-2n) - n(n+5) chia hết cho 3 với mọi n thuộc N
a) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)\(⋮\)\(5\)
b) \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)
\(=3n-2n^2-3+2n-n^2-5n\)
\(=-3n^2-3\)
\(=-3\left(n^2+1\right)\)\(⋮\)\(3\)
a) cho A = 10^8 +8 . chứng minh rằng A chia hết 9
b) Tìm n thuộc Z để 2n - 3 chia hết cho n+1
Chứng minh rằng:
a) (2n+3)2-9 chia hết cho 4 (n€Z)
b) n2(n+1)+2n2+2n chia hết cho 6 (n€Z)
a) ( 2n+3 )2 - 9 = (2n+3 - 3 )(2n+3+3) = 2n.(2n+6)=4n(n+3) \(⋮\)4
b) n2 (n+1) + 2n2 + 2n = n2 ( n + 1 ) + 2n ( n + 1 ) = (n + 1 ) ( n2 + 2n ) = n ( n + 1 ) ( n + 2 ) \(⋮\)6
abcdefjhijklmnopqrstuvwxyz
chứng minh rằng (2n-1)^2-(2n-1^2) chia hết cho 8 với n thuộc z