Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thần Rồng
Xem chi tiết
Lam Vu Thien Phuc
Xem chi tiết
Trần Đức Thắng
25 tháng 6 2015 lúc 18:06

Neus không sai ddf thì tip nha

= 5n^2 + 5n

= 5n ( n+1)

Vì n và n+ 1 là hai số tự nhiên liên típ 

=> n(n+1) chia hét cho 2

=> 5n(n+1) chia hét cho 2.5 hay 5n(n+1) chia hết cho 10

MIU Ka
Xem chi tiết
I am➻Minh
5 tháng 8 2019 lúc 21:57

\(A=\left(n^2+3n+2\right)\left(2n-1\right)-2\left(n^3-2n-1\right)\)

\(A=2n^3+6n^2+4n-n^2-3n-2-2n^3+4n+2\)

\(A=5n^2+5n\)

\(A=5n\left(n+1\right)\)

\(\text{Vì 5⋮5 nên 5n(n+1)⋮5}\)(1)

\(\text{Vì n;n+1 là hai số tự nhiên liên tiếp nên n(n+1)⋮2}\)

\(\Rightarrow5n\left(n+1\right)⋮2\)(2)

\(\text{Từ (1) và (2)}\Rightarrow5n\left(n+1\right)⋮10\text{ vì (2,5)=1}\)

\(\text{Vậy A⋮10}\)

Nguyễn Thanh Bình
Xem chi tiết
Minh Ánh 6A Lê
28 tháng 10 2021 lúc 15:43

giời ơi lớp 6 mà cũng ko biết, bó tay

Khách vãng lai đã xóa
Trần Mai Phương
28 tháng 10 2021 lúc 15:51

ủa bn Minh Anh 6A Lê bn ấy ko biết mới hỏi chứ

Khách vãng lai đã xóa
Minh Ánh 6A Lê
29 tháng 10 2021 lúc 20:04

 mai phương học trg nào đấy

Khách vãng lai đã xóa
Quỳnh Như
Xem chi tiết
Hoang Hung Quan
15 tháng 6 2017 lúc 10:45

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

Nguyễn Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 10 2021 lúc 21:22

\(3^{n+1}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)

Trương Việt Hoàng
Xem chi tiết
Giang Trần
Xem chi tiết
Nguyễn Ngọc Anh Thơ
Xem chi tiết
Nguyễn Ngọc Anh Minh
26 tháng 10 2016 lúc 13:57

a/ Nếu n chia hết cho 5 thì n(n+1)(n+2)(n+3)(n+4) chia hết cho 5 với mọi n

+ Nếu n chia 5 dư 1 thì n có dạng 5k+1 => n+4=5k+5=5(k+1) chia hết cho 5

+ Nếu n chia 5 dư 2 thì n có dạng n=5k+2 => n+3=5k+2+3=5(k+1) chia hết cho 5 

+ Nếu n chia 5 dư 3 thì n có dạng n=5k+3 => n+2 =5K+3+2=5(k+1) chia hết cho 5

+ Nếu n chia 5 dư 4 thì n có dạng n=5k+4 => n+1 = 5k+4+1=5(k+1) chia hết cho 5

=> Biểu thức rên chia hết cho 5 với mọi n

b/ 

+ Nếu n lẻ => n+1 chẵn và 3n+2 lẻ => (n+1)(3n+2) chẵn => chia hết cho 2

+ Nếu n chẵn => n+1 lẻ và 3n+2 chẵn => (n+1)(3n+2) chẵn => chia hết cho 2

=> biểu thức chia hết cho 2 với mọi n thuộc N