2.
\(P=1+5^3+5^6+5^9+...+5^{99}\)
Tinh nhanh:
m)5^1+5^2+5^3+...+5^199+5^200
n)3^0-3^2+3^3-3^4+...+3^2017-3^2018+3^2019-3^2020
o)6+6*9+6*9^2+6*9^3+...+6*9^99
p)(-1)*(-1^2)*(-1^3)*(-1^4)*...*(-1^99)*-(1^100)
Giup minh nhe!
Đặt \(A=5+5^2+5^3+....+5^{199}+5^{200}\)
\(\Leftrightarrow5A=5\left(5+5^2+5^3+....+5^{199}+5^{200}\right)\)
\(\Leftrightarrow5A=5^2+5^3+5^4+....+5^{200}+5^{201}\)
\(\Leftrightarrow5A-A=\left(5^2+5^3+5^4+....+5^{200}+5^{201}\right)-\left(5+5^2+5^3+....+5^{199}+5^{200}\right)\)
\(\Leftrightarrow4A=5^{201}-5\)
\(\Leftrightarrow A=\frac{5^{201}-5}{4}\)
1+2+3+4+5+6+7+8+9+.............+99=X+1+2+3+4+5+6+7+8+9+........................+99
Tìm X
1+2+3+4+5+6+7+8+9+...........+99=X+1+2+3+4+5+6+7+8+9+.................+99
4950=4950+X
X=4950-4950
X=0
Đọc sơ qua cái đề thì ai chả là X = 0
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
Tinh:a)N=1+3^2+...+3^100;b)P=1+5^3+5^6+5^9+...+5^99
a)(nhân N vs 3^2 rồi trừ đi N) chia cho 3^2-1
b)(nhân P vs 5^3 rồi trừ đi P) chia cho 5^3-1
a, \(N=1+3^2+...+3^{100}\)
\(\Rightarrow3^2N=3^2+3^4+...+3^{102}\)
\(\Rightarrow3^2N-N=\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+...+3^{100}\right)\)
\(\Rightarrow8N=3^{102}-1\)
\(\Rightarrow N=\frac{3^{102}-1}{8}\)
\(P=1+5^3+5^6+...+5^{99}\)
\(5^3P=5^3+5^6+5^9+...+5^{102}\)
\(5^3P-P=\left(5^3+5^6+5^9+...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
\(124P=5^{102}-1\)
\(P=\frac{5^{102}-1}{124}\)
1.tính
a)1-2+3-4+5-6+7-8+8-9+9-10
b)1-2+3-4+...+99-100
c)1-3+5-7+9-11+13-15
d)1-3+5-7+...+99-101
e)-1-2-3-4-...-99-100
a)\(1-2+3-4+5-6+7-8+8-9+9-10\)
=\(\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+\left(8-9\right)+\left(9-10\right)\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(=\left(-1\right).6\)
\(=-6\)
b)\(1-2+3-4+...+99-100\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)}\(\left[\left(100-1\right):1+1\right]:2=50\)(cặp)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)} 50 số (-1)
\(=\left(-1\right).50\)
\(=-50\)
c)\(1-3+5-7+9-11+13-15\)
\(=\left(1-3\right)+\left(5-7\right)+\left(9-11\right)+\left(13-15\right)\)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)
\(=\left(-2\right).4\)
\(=-8\)
d)\(1-3+5-7+...-99+101\) (Đối với bài này, có vẻ đề sai, mình đã sửa lại rồi
\(=\left(1-3\right)+\left(5-7\right)+...+\left(97-99\right)+101\) } \(\left[\left(99-1\right):2+1\right]:2=25\)(cặp)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+...+\left(-2\right)\) } 25 số (-2)
\(=\left(-2\right).25\)
\(=-50\)
e)\(-1-2-3-4-...-99-100\)
\(=\left(-1\right)+\left(-2\right)+\left(-3\right)+...+\left(-99\right)+\left(-100\right)\)
\(=\left[\left(-1\right)+\left(-100\right)\right]+\left[\left(-2\right)+\left(-99\right)\right]+...+\left[\left(-51\right)+\left(-50\right)\right]\) } \(\left[\left(100-1\right):1+1\right]:2=50\)(cặp) (phần này của đề bài, không thay được như (-100) hoặc (-1))
\(=\left(-100\right)+\left(-100\right)+\left(-100\right)+...+\left(-100\right)\)} 50 số (-100)
\(=\left(-100\right).50\)
\(=-5000\)
tính các tổng sau
1) A = 1+7+7^2+7^3+....+7^2007
2) B= 1+4 +4^2+4^3+....+4^100
3) C= 1+3^2 +3^4 +3^6+3^8+....+3^100
4) D= 7+7^3 + 7^5+7^7+7^9+....+7^99
5)E= 2+2^3+2^5+2^7+2^9+....+2^2009
6) B = 1+2^2+2^4+2^6+2^8+....+2^200
7) C= 5+5^3+5^5+5^9+....+5^101
8) D = 13+13^3+13^5+...+13^99
Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha
1, 7A = 7+7^2+7^3+....+7^2008
6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1
=> A = (7^2008-1)/6
Tk mk nha
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)
\(\Rightarrow6A=7^{2008}-1\)
\(\Rightarrow A=\frac{7^{2008}-1}{6}\)
4b=4+4^2+4^3+...+4^101
4b-b=(4+4^2+...+4^101)-(1+4+4^2+...+4^100)
3b=4^101-1
b=(4^101-1):3
tính giá trị biểu thức
A=1-3+5-7+9-11+...+97-99
B= -1-2-3-4-...-100
C= 1-2+3-4+5-6+...+99-100
D= 1-2-3+4+5-6-7+8+9-...-94-95
Tính
1+4+5+9+14+...+60+97
5+9+13+...+2005+2009+2013
3+6+9+...+108
1×2+2×3+3×4+4×5+...+98×99+99×100
Bài 1: Tính giá trị biểu thức
a.) A = 1 - 3 + 5 - 7 + 9 - 11 + ... + 97 - 99
b.) B = - 1 - 2 - 3 - 4 - ... - 100
c.) C = 1 - 2 + 3 - 4 + 5 - 6 + ... + 99 - 100
d.) D = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + 9 - ... - 94 - 95
a/ A= 1-3+5-7+9-11+......+97-99
= -2+(-2)+(-2)+......+(-2)
= (-2).25=-50
b/B=-1-2-3-4-...-100
=-(1+2+3+4+...+100)
=-5050
c/C=1-2+3-4+5-6+......+99-100
= -1+(-1)+(-1)+.............+(-1)
=(-1).50=-50
d/D=1-2-3+4+5-6-7+8+9-....+94-95
= (1-2-3+4)+(5-6-7+8)+.......+(92-93-94+95)
= 0+0+0+...+0=0