tìm x,y thuộc z:
x^2+2y=11
Tìm x,y thuộc z thõa mãn x^2+2y=11
\(x^2+2y=11\)
<=> \(x^2=11-2y\)
điều kiện \(11-2y\ge0\)=> y<=5,5
=> \(x=\pm\sqrt{11-2y}\)
=> ta chỉ cần tìm những giá trị y sao 11-2y là số chình phương
đáng lẽ đề này phải là thuộc N chứ
Bài 1: Tìm x thuộc Z biết:
(x-3)+(x-2)+(x-1)+…+10+11=11
Bài 2: Tìm x,y thuộc Z biết:
a)(x-3)(2y+1)=7
b)(2x+1)(3y-2)= -55
c) xy+3x-7y=21
Tìm x , y thuộc Z:
a) x + 2.x.y - y = -10
b) x + 2y - x.y = -11
Tìm x,y thuộc Z xy+3x+2y=11
TH1: y=-3 (sai)
TH2: y khác -3 vậy x= (11+2y) / (y+3)=2+5/(y+3)
Vì x thuộc Z nên 5/(y+3) phải là số nguyên
==> y+3 phải là ước của 5 ==> y+3 có thể bằng 1, -1, 5, -5. từ đó bạn tìm được x rồi.
Tìm x,y thuộc z biết
a, (x-1) . (x^2 + 1) =0
b, xy +3x -2y =11
tìm x,y thuộc Z biết xy+3x-2y=11
xy+3x-2y=11
=>x(y+3)-2y-6=5
=>x(y+3)-(2y+6)=5
=>x(y+3)-2(y+3)=5
=>(x+2)(y+3)=5
Bạn kẻ bảng ra nha
tìm x,y thuộc Z biết: xy+3x-2y=11
\(xy+3x-2y=11\)
\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)
\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y+3\right)\)là các ước nguyên của 5
\(Th1:x-2=1\Leftrightarrow x=3\)
\(y+3=5\Leftrightarrow y=3\)
\(Th2:x-2=-1\Leftrightarrow x=-1\)
\(y+3=-5\Leftrightarrow y=-8\)
\(Th3:x-2=5\Leftrightarrow x=7\)
\(y+3=1\Leftrightarrow y=1\)
\(Th4:x-2=-5\Leftrightarrow x=-3\)
\(y+3=-1\Leftrightarrow y=-4\)
Vậy: \(\left(x;y\right)\in\left\{3,2\right\};\left\{1,-8\right\};\left\{7;-2\right\};\left\{-3;-4\right\}\)
xy-3x+2y-11=0 tìm x,y thuộc Z
Giải
Theo đề bài, ta có: \(xy-3x+2y-11=0\)
\(\Leftrightarrow x\left(y-3\right)+2y-6=5\)
\(\Leftrightarrow x\left(y-3\right)+2\left(y-3\right)=5\)
\(\Leftrightarrow\left(x+2\right)\left(y-3\right)=5\)
\(\Leftrightarrow\hept{\begin{cases}x+2\\y-3\end{cases}}\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng:
\(x+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(y-3\) | \(5\) | \(-5\) | \(1\) | \(-1\) |
\(x\) | \(-1\) | \(-3\) | \(3\) | \(-7\) |
\(y\) | \(8\) | \(-2\) | \(4\) | \(2\) |
Vậy \(\left(x,y\right)\in\left\{\left(-1,8\right);\left(-3,-2\right);\left(3,4\right);\left(-7,2\right)\right\}\)
Bài 1:Tìm x,y,z thuộc Z sao cho:x-y=-9;y-z=-10;z+x=11
Bài 2:Tìm x thuộc Z biết:
a.(x+1)+(x+3)+(x+5)+...+(x+99)=0
b.(x-3)+(x-2)+(x-1)+...+10+11=11
c.x+(x+1)+(x+2)+...+2018+2019=2019
Bài 3:Tìm các số nguyên x,y biết:
a.(x-2)(y-3)=7 b.(x+1)(2y-3)=10
c.xy-3x=-19 d.3x+4y-xy=16
(x+1)+(x+3)+...+(x+99)=0
Tổng các số hạng là: (99+1):2=50 (số hạng)
=> (x+1)+(x+3)+...+(x+99)=0 <=> 50.x+(1+3+5+...+99) = 0
<=> 50.x+=0 <=> 50.x+2500=0 => x=-2500/50=-50
Tìm x,y thuộc Z,biết:
xy+3x-2y=11
xy+3x-2y=11
<=>x(y+3)-2(y+3)=5
<=>(x-2)(y+3)=5
suy ra (x-2) và (y+3) là các ước nguyên của 5
Th1.x-2=1<=>x=3
........y+3=5<=>y=2
Th2.x-2=-1<=>x=1
........y+3=-5<=>y=-8
Th3.x-2=5<=>x=7
........y+3=1<=>y=-2
Vậy (x;y) = (3;2) ; (1;-8) ; (7;-2) ; (-3;-4)
xy + 3x-2y=11
<=> x(y+3)-2(y+3)=5
<=>(x-2)(y+3)=5
suy ra (x-2) và (y+3) là các ước nguyên của 5.
Th1. x-2=1 <=>x=3
.......y+3=5 <=> y=2
Th2 x-2=-1 <=> x=1
.......y+3=-5 <=> y= -8
Th3. x-2=5 <=> x=7
.......y+3=1 <=> y= -2
Th4. x-2= -5 <=> x= -3
.......y+3= -1 <=> y= -4
Vậy (x,y) = (3, 2); (1, -8); (7, -2); (-3, -4)