tim GTLN hoac GTNN cua bieu thuc C= -x2+6x+1
tim GTLN hoac GTNN cua bieu thuc D= -3x2 +12x+11
tim GTLN hoac GTNN cua bieu thuc B= -x2-8x+5
TIM GTLN HOAC GTNN CUA CAC BIEU THUC SAU
B=5-2Z^2
C=/X-3/+/5-X/
B = 5 - 2z2
Vì 2z2 ≥ 0 => B = 5 - 2z2 ≤ 5
Dấu "=" xảy ra khi 2z2 = 0 => z = 0
Vậy Bmax là 5 tại z = 0
C = |x - 3| + |5 - x| ≥ |x - 3 + 5 - x| = 2
Dấu "=" xảy ra khi (x - 3)(5 - x) ≥ 0 <=> 5 ≥ x ≥ 3
Vậy Cmin = 2 tại 5 ≥ x ≥ 3
tim gtln hoac gtnn cua bieu thuc
A=x2-x
lm on giup minh nha
A= (x^2 - 2.x.1/2 + 1/4) -1/4
=(x-1/2)^2 -1/4 >= -1/4
Dấu"=" xảy ra <=> x-1/2 = 0 <=>x=1/2
Vậy Min A= -1/4 <=> x=1/2
Tìm GTNN hoac GTLN cua bieu thuc sau
4x2 + 4x + 11
\(A=4x^2+4x+11=\left(4x^2+4x+1\right)+10\)
\(=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\forall x\Rightarrow\left(2x+1\right)^2+10\ge10\)
''='' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy Min_A = 10 khi x = -1/2
\(A=4x^2+4x+11\)
\(\Leftrightarrow A=4x^2+4x+1+10\)
\(\Leftrightarrow A=\left[\left(2x\right)^2+2.2x+1\right]+10\)
\(\Leftrightarrow A=\left(2x+1\right)^2+10\)
Vậy GTNN của A=10 khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)
tim gtnn hoac gtln cua bieu thuc sau
A=100-(x^2-4)^2-3(x+2)^2
B=4-2x^2+3x
mn giup mk vsss
Tim GTNN hoac GTLN cua cac bieu thuc sau :
a) A = 3|2x - 1| - 5 b) B = 10 - 5 |x - 2| c) C =\(\frac{1}{\left|x-2\right|+3}\)
Tim GTLN hoac( GTNN )cua bieu thuc ;
A=|2x-3/5|+1,(3)
B=1/3-|x-2| (B>0)00
C=-2|1/3x+4|+3/2
D=|x-3|+|x+2/3|
tim gtln hoac gtnn cua biet thuc
C= -x2-2x+5-y2+4y
Tìm GTLN nak !!!
\(C=-x^2-2x+5-y^2+4y\)
\(=\left(-x^2-2x-1\right)+\left(-y^2+4y-4\right)+10\)
\(=-\left(x+1\right)^2-\left(y-2\right)^2+10\le10\)có GTLN là 10
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Vậy \(C_{max}=10\) tại \(x=-1;y=2\)