\(A=4x^2+4x+11=\left(4x^2+4x+1\right)+10\)
\(=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\forall x\Rightarrow\left(2x+1\right)^2+10\ge10\)
''='' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy Min_A = 10 khi x = -1/2
\(A=4x^2+4x+11\)
\(\Leftrightarrow A=4x^2+4x+1+10\)
\(\Leftrightarrow A=\left[\left(2x\right)^2+2.2x+1\right]+10\)
\(\Leftrightarrow A=\left(2x+1\right)^2+10\)
Vậy GTNN của A=10 khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)