\(2+x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{9}{4}\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
''='' xảy ra khi x = 1/2
Vậy GTLN của bt là \(\dfrac{9}{4}\) khi x = 1/2
\(A=2+x-x^2\)
\(\Leftrightarrow A=-x^2+x-\dfrac{1}{4}+\dfrac{9}{4}\)
\(\Leftrightarrow A=-\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{9}{4}\)
\(\Leftrightarrow A=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)
Vậy GTNN của \(A=\dfrac{9}{4}\) khi \(x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)