Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phương thảo nguyễn vũ
Xem chi tiết
nguyenvankhoi196a
16 tháng 11 2017 lúc 19:37

Mình có nghe nói là 2 nhà toán học Alfred North Whitehead và Bertrand Russell đã chứng minh 1+1=2 trong quyển Principa Mathemaa (tạm dịch: nền tảng của toán học). Họ đã mất hơn 360 trang để chứng minh điều này. Thầy giáo bạn gãi đầu là phải. 

Phép chứng minh này dựa trên một bộ 9 tiên đề về tập hợp gọi tắt là ZFC (Zermelo–Fraenkel). Rất nhiều lý thuyết số học hiện đại dựa trên những tiên đề này. Nếu có người chứng minh được một trong những tiên đề đó là sai (VD: 2 tập hợp có cùng các phần tử mà vẫn không bằng nhau) thì rất có thể dẫn đến 1+1 != 2

Sỹ Tùng Thái
Xem chi tiết
Nguyễn
Xem chi tiết
Pham Van Hung
27 tháng 7 2018 lúc 18:01

Ta có: (x^2 + 9y^2 + 4- 6xy -12y+ 4x)+(x^2 -10x+25) =0

          (x-3y+2)^2 +(x-5)^2 =0

Vì vế trái luôn luôn lớn hơn hoặc bằng 0 với mọi x,y nên dấu"=" xảy ra khi:

   x-3y+2 =0 và x-5=0

   5-3y+2 =0 và x=5

   y=7/3 và x=5

Vậy x=5 và y=7/3.

Chúc bạn học tốt.

Nguyễn
4 tháng 8 2018 lúc 12:21

Cảm ơn bạn nhiều nha!yeu

tinker bell
Xem chi tiết
NGUYỄN THÚY AN
Xem chi tiết
Hoàng Phúc
31 tháng 12 2015 lúc 21:02

/x+3/5/ >/ 0

/-2/3-y/ >/ 0

=>/x+3/5/+/-2/3-y/ >/ 0

Mà theo đề:/x+3/5/+/-2/3-y/=0

=>/x+3/5/=/-2/3-y/=0

=>x=-3/5 và y=-2/3

 Tick nhé

Cao Phan Tuấn Anh
31 tháng 12 2015 lúc 21:02

ai tick mik đến 210 mik tick cho cả đời

Cao Phan Tuấn Anh
31 tháng 12 2015 lúc 21:02

ai tick mik đến 210 mik tick cho cả đời

Habin_ Ngốc
Xem chi tiết
Lê Chí Cường
30 tháng 4 2016 lúc 10:00

Đề thế này phải ko bạn: 

Chứng minh rằng: \(x^5+y^5\ge x^4.y+x.y^4\)với \(x,y\ne0\)\(x+y\ge0\)

Lê Chí Cường
30 tháng 4 2016 lúc 9:58

bạn vào fx viết lại đề đi nha, sai đề rùi

Lê Chí Cường
30 tháng 4 2016 lúc 10:09

Ta có: \(x^5+y^5\ge x^4.y+x.y^4\)(1)

<=>\(x^5+y^5-x^4.y-x.y^4\ge0\)

<=>\(\left(x^5-x^4.y\right)-\left(x.y^4-y^5\right)\ge0\)

<=>\(x^4.\left(x-y\right)-y^4.\left(x-y\right)\ge0\)

<=>\(\left(x^4-y^4\right).\left(x-y\right)\ge0\)

<=>\(\left[\left(x^2\right)^2-\left(y^2\right)^2\right].\left(x-y\right)\ge0\)

<=>\(\left(x^2+y^2\right).\left(x^2-y^2\right).\left(x-y\right)\ge0\)

<=>\(\left(x^2+y^2\right).\left(x+y\right).\left(x-y\right).\left(x-y\right)\ge0\)

<=>\(\left(x^2+y^2\right).\left(x+y\right).\left(x-y\right)^2\ge0\)

Vì \(x^2+y^2\ge0,\left(x-y\right)^2\ge0\)

=>(1)<=>\(x+y\ge0\)(2)

Vì \(x+y\ge0\)(theo giả thiết)

=>(2) đúng với mọi x,y

Vì các dấu"<=>" có giá trị như nhau

=>(1) đúng với mọi x,y

=>ĐPCM

Ngô Hoàng Hà
Xem chi tiết
Lê Khánh	Thư
Xem chi tiết
Nguyễn Huy Tú
11 tháng 12 2020 lúc 22:45

 \(\left|x-2y\right|+\left|y-2020\right|=0\)

Ta có : \(\hept{\begin{cases}\left|x-2y\right|\ge0\forall x;y\\\left|y-2020\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-2y\right|+\left|y-2020\right|\ge0\forall x;y\)

Dấu ''='' xảy ra : \(\hept{\begin{cases}x=2y\\y=2020\end{cases}\Leftrightarrow\hept{\begin{cases}x=4040\\y=2020\end{cases}}}\)

Vậy \(\left\{x;y\right\}=\left\{4040;2020\right\}\)

Khách vãng lai đã xóa
Tống Yến Nhi
Xem chi tiết