Cho tam gíc ABC vuông ở A có AH là đường cao.Tính AB biết AH=12,BC=25
cho tam giác ABC vuông tại A,AH là đường cao.Tính BC,AH,AB,AC.
Bài 2: cho tam giác ABC vuông tại A.Có AH là đường cao.Tính BH,biết AH=2cm;BC=5cm.
Bài 3:Cho tam giác ABC vuông tại A.Có AH là đường cao từ H kẻ HM,HN vuông góc với AB,AC. CM : AM.AB=AN.AC Giúp mik với ạ chiều cần gấp lắm(chi tiết giúp mik a)
3:
ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
giúp mk nka mn: cho tam giác ABC vuông ở A, đường cao AH, biết AH / BC =12/25 và AB=8cm. thính HA, HB, HC
Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH. Biết AH = 12 cm, BC = 25 cm. Tính BH, HC, AB, AC (Vẽ hình mẫu)
Sử dụng hệ thức lượng trong tam giác vuông thôi:
AB*AC = AH*BC = 12*25 = 300
AB^2 + AC^2 = BC^2 = 25^2 = 625
giải hệ trên ta được : AB = 15, AC = 20
AB^2 = BH*BC=> BH = AB^2/BC = 9
AH^2 = BH*CH=> CH = AH^2/BH = 12^2/9 = 16
NGOÀI RA HỆ PT TRÊN CÒN 1 NGHIỆM NỮA LÀ AB=20,AC=15
cho tam giác ABC vuông tại A đường cao AH
a, biết AH=16 , BH= 25 tính AB,AC,CH,BC
b, biết AB=12 BH=6 ,tính AH,AC,BC,CH,
cho tam giac ABC có dg cao AH . Biết AH=12 BH=9 và BC=25 a) chứng minh tam giác ABC vuông tại A b) vẽ tia BX song song AC cắt AH ở D . Tính HD và chứng minh AB^2 = AC.BD
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Tam giác ABC vuông tại A, biết AB=6cm, BC=10cm
a) Tính AC?
b) Kẻ đường phân giác BD. Kẻ AE Vuông Góc Với BD, AE cắt BC ở K. Tam giác ABK là tam giác gì ?
c) Chứng Minh DK vuông góc với BC
d) Kẻ AH vuông góc với BC. Chưng mnh AK là tia phân gíc của góc HAC
a) Áp dụng định lí Pi-Ta-go vào ΔABC :
\(AC^2=BC^2-AB^2=10^2-6^2=64\)
\(AC=\sqrt{64}=8\left(cm\right)\).
b) ΔABK có BE vừa là đường cao vừa là trung tuyến nên tam giác ABk là tam giác cân.( nếu bạn chưa học tính chất này thì xét 2 tam giác BEA và BEK cũng được, điều kiện xét đã có sẵn r).
c) Xét ΔABD và ΔKBD có:
AB=AK(ΔABK cân tại B)
Góc ABD=KBD(gt)
BD cạnh chung
Vậy ΔABD=ΔKBD(c.g.c)
=> Góc BAD=BKD=90o(hai góc tương ứng)
hay DK vuông góc với BC
d) Vì DK vuông góc với BC
AH vuông góc với BC
nên DK//AH => Góc DKA=HAK(so le trong) (1)
Vì ΔABD=KBD(cmt) => AD=KD(2 cạnh tương ứng) hay tam giác ADK cân tại K
=> Góc DKA=DAK hay DKA=CAK (2)
Từ (1) và (2) suy ra Góc HAK=CAK
Hay AK là tia phân giác của góc HAC.
Bài 1: Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH và AH = 12 cm ; BC = 25 cm.
a) Tìm độ dài của BH; CH; AB và AC.
b) Vẽ trung tuyến AM. Tính AM
c) Tìm diện tích của rAHM.
Bài 2: Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 12 cm; EF = 20. Tính DF; EH; FH.
Bài 3: Cho tam giác DEF vuông tại D, đường cao DH. Biết EH = 1 cm; FH = 4 cm. Tính EF; DE; DF.
Bài 4: BP 2017-2018
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH = 9cm.
a) Tính độ dài đường cao AH và ABC của tam giác ABC.
b) Vẽ đường trung tuyến AM, (M e BC) của tam giác ABC. Tính AM và diện tích của tam giác
Bài 5. Đường cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là 3 và 4 . Hãy tính các cạnh góc vuông của tam giác vuông này, đường trung tuyến ứng với cạnh huyền và diện tích tam giác ABC
Bài 6. (1.0 điểm)
Cho tam giác ABC vuông tại A, có AB = 15cm và AC = 20cm. Tính độ dài đường cao AH và trung tuyến AM của tam giác ABC.
câu c bài 1 là tích diện tích của tam giác AHM nhá'
Cho tam giác ABC vuông tại A có đường cao AH. Biết BH =25/13cm, AH=60/13cm.Tính AB,AC,BC,CH
Áp dụng hệ thức lượng vào tam giác vuông ABC vuông tại A, đường cao AH có:
\(AH^2=HB.HC\\ \Rightarrow CH=\dfrac{AH^2}{HB}=\dfrac{\left(\dfrac{60}{13}\right)^2}{\left(\dfrac{25}{13}\right)}=\dfrac{144}{13}\left(cm\right)\)
\(BC=BH+HC=\dfrac{25}{13}+\dfrac{144}{13}=13\left(cm\right)\)
\(AB^2=HB.BC\\ \Rightarrow AB=\sqrt{\dfrac{25}{13}.13}=5\left(cm\right)\)
\(AC^2=HC.BC\\ \Rightarrow AC=\sqrt{\dfrac{144}{13}.13}=12\left(cm\right)\)