tìm hai số biết tổng bằng 162 và Ước chung lớn nhất của chúng là 18
Tìm 2 số biết tổng bằng 162 và ước chung lớn nhất của chúng bằng 18
Tìm hai số biết tổng của chúng là 162 và ước chung lớn nhất là 18
trình bày bài toán
Tìm 2 số có tổng là 162 và UCLN là 18.
x+y=162
x=18m; y=18n => m+n=9 và m, n nguyên tố cùng nhau => xảy ra 3 trường hợp
1. m=4; n=5 hoặc ngược lại
=> x=18*4=72 và y=18*5=90 hoặc ngược lại
2. m=1 và n=8 hoặc ngược lại
=> x=18 và y=144 hoặc ngược lại
3. m=2 và n=7 hoặc ngược lại
=> x=36 và y=126 hoặc ngược lại
tìm 2 số tự nhiên biết tổng chúng là 162 và Ước chung lớn nhất của chung là 18
Gọi hai số tự nhiên cần tìm lần lượt là a và b ( ĐK a,b thuộc N )
Vì tổng của chúng là 162 nên a + b = 162
Vì ƯCLN(a,b) = 18 nên a = x.18 ; b = y.18 ( ĐK x,y thuộc N sao )
Thay a =x.18 ; b = y.18 vào a + b = 162 ta được:
x.18 + y.18 = 162
18.( x + y ) = 162
x + y = 162 : 18 = 9
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
y | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |
a | 18 | 36 | 54 | 72 | 90 | 108 | 126 | 144 | |
b | 144 | 126 | 108 | 90 | 72 | 54 | 36 | 18 |
Vậy: .........
Nhớ k cho mình nhé! Thank you!!!
Tìm hai số biết tổng là 162 và ước chung lớn nhất là 18
Lời giải:
Gọi hai số cần tìm là $a$ và $b$. Do $ƯCLN(a,b)=18$ nên đặt $a=18x, b=18y$ với $x,y$ là số tự nhiên. $ƯCLN(x,y)=1$.
Ta có:
$a+b=18x+18y=162$
$\Rightarrow x+y=9$
Do $ƯCLN(x,y)=1$ nên $(x,y)=(1,8), (2,7), (4,5), (5,4), (7,2), (8,1)$
$\Rightarrow (a,b)=(18, 144), (36, 126), (72, 90), (90, 72), (126,36), (144,18)$
Tìm hai số tự nhiên biết rằng tổng của chúng bằng 144 và ước chung lớn nhất của chúng bằng 18.
Gọi hai số tự nhiên thỏa mãn đề bài là a và b thì theo bài ra ta có:
ƯCLN(a,b) =18 ⇒ \(\left\{{}\begin{matrix}a=18m\\b=18n\end{matrix}\right.\) (m.n) = 1 ; m,n \(\in\) N*
18m + 18n = 144 ⇒ m + n = 144: 18 = 8
Vì (m, n) = 1 ⇒ (m, n) = ( 1; 7); ( 3; 5)
th1: (m,n) = (1.7) ⇒ a = 18; b = 18 \(\times\) 7 = 126
th2: (m,n) = (3,5) ⇒ a = 18 \(\times\) 3 = 54; b = 18 \(\times\) 5 = 90
Kết luận hai cặp số tự nhiên thỏa mãn đề bài là:
18 và 126; 54 và 90
Bài 1 :
Tìm hai số tự nhiên có tổng là 162 và ước chung lớn nhất của chúng bằng 18 .
Bài 2 :
Chứng minh 2n + 3 và 5n + 7 là hai số nguyên tố cùng nhau.
gọi d là ƯC(2n + 3; 5n + 7)
=> 2n + 3 ⋮ d và 5n + 7 ⋮ d
=> 10n + 15 và 10n + 14 ⋮ d
=> 10n + 15 - 10n - 14 ⋮ d
=> 1 ⋮ d
=> d = 1
=> 2x + 3 và 5n + 7 là 2 số nguyên tố cùng nhau
Bài 1:Tìm hai số tự nhiên.Biết rằng tổng của chúng bằng 66,ước chung lớn nhất của chúng bằng 6,đồng thời có một số chia hết cho 5.
Bài 2:Tìm hai số tự nhiên ,biết hiệu của chúng bằng 84 và ước chung lớn nhất của chúng bằng 12.
Bài 3:Tìm hai số tự nhiên,biết tích của chúng bằng 864 và ước chung lớn nhất của chúng bằng 6.
Tìm 2 số biết rằng tổng của chúng bằng 62 và ước chung lớn nhất bằng 18.
cả tôi nữa để thi giải toán VIOLYMPIC
Tìm hai số biết rằng bội chung nhỏ nhất của chúng và ước chung lớn nhất của chúng có tổng bằng 19.
Khi phân tích kĩ:
bội chung nhỏ nhất nhân ước chung lớn nhất bằng tích 2 số.
a.b=19.
Tìm các ước dễ vì 19 là số nguyên tố mà.
a và b là...
Chúc học giỏi,cách làm tương tự