Chứng minh M là số chính phương :
M=1+3+5+7+.....+(2n-1)
với n là số tự nhiên
Chứng minh rằng M là số chính phương, biết : M=1+3+5+7+......+(2n-1) (với n là số tự nhiên)
chứng minh rằng M là số chính phương:
M=1+3+5+7+.....+(2n-1) với n là số tự nhiên
chứng tỏ rằng M là số chính phương :
M=1+3+5+7+...........+(2n-1) (với n là số tự nhiên)
Số số hạng là: [(2n-1) - 1] : 2 +1 = n (số hạng)
M = n(2n-1+1) : 2 = n(2n):2 = n2
=> M là số chính phương
Chứng minh rằng tổng S = 1+3+5+...+(2n+1) là số chính phương với mọi n là số tự nhiên
\(S=\left[\left(2n+1-1\right):2+1\right]\times\left(2n+1+1\right):2\)
\(S=\left(n+1\right)\times\left(2n+2\right):2\)
\(S=\left(n+1\right)\times\left(n+1\right)\)
\(S=\left(n+1\right)^2\)( dpcm )
Cho hai số tự nhiên M và N, trong đó số M chỉ gồm 2n chữ số 1, số N chỉ gồm n chữ số 4.Chứng minh rằng: M+N+1 là một số chính phương. (Số chính phương là số bằng bình phương của một số tự nhiên)
M là một số chính phương không nếu :M=1+3+5+...+(2n-1) (Với n là số tự nhiên và n khác 0)
Cho số tự nhiên n > 1. Chứng minh 1+3+5+...+(2n-1) là số chính phương.
Số số hạng là:
[(2n - 1) - 1] : 2 + 1 = n (số)
Tổng M là:
[(2n - 1) + 1].n : 2 = 2n.n : 2 = 2n2 : 2 = n2
Vậy 1 + 3 + 5 + ... + ( 2n - 1 ) là số chính phương
Tổng trên có số số hạng là: ((2n-1) - 1 ): 2 + 1 )= n ( số số hạng ) Vì mình không biết ấn dấu ngoặc vuông nhé =))
Tổng trên là: ((2n - 1 ) + 1 ) * n : 2 = 2n. n : 2 = (2n : 2 ) * n = n * n = n^ 2 ( viết liền luôn cũng được bạn nhé )
=> Tổng : 1 + 3 + 5 + ... + (2n - 1 ) là số chính phương ( đpcm )
Số số hạng là:
[(2n - 1) - 1] : 2 + 1 = n (số)
Tổng M là:
[(2n - 1) + 1].n : 2 = 2n.n : 2 = 2n2: 2 = n2
Vậy 1 + 3 + 5 + ... + ( 2n - 1 ) là số chính phương
Cho 2 số tự nhiên M và N:
M gồm 2n chữ số 1; N gồm n chữ số 4
Chứng minh rằng: M + N + 1 là số chính phương
Đề bài là chứng minh ko fai tìm
Tổng sau là số chính phương ko ?
a)C=1+3+5+7+...+(2n-1)với n là số tự nhiên
b)D=2+4+6+8+...+2n với n là số tự nhiên