cmr tồn tại một bội của 999 được tạo từ toàn các chữ số 0 và 7
Chứng tỏ rằng tồn tại một bội của 1989 được viết bởi toàn các chữ số 1 và 0.
Chứng tỏ rằng tồn tại một bội của 1989 được viết bởi toàn các chữ số 1 và 0.
Xét 1990 số : 1 , 11 , 111 , ... , 111...1 (1990 chữ số 1)
Lần lượt chia 1990 số trên cho 1989 thì số dư chỉ có thể từ 0 đến 1988.Theo nguyên lý Dirichlet,có 1990 số mà chỉ có 1989 số dư nên tồn tại 2 số chia 1989 có cùng số dư và hiệu của chúng chia hết cho 1989.Hiệu này được viết bởi các chữ số 1 và 0.
Xét 1990 số : 1 , 11 , 111 , ... , 111...1 ﴾1990 chữ số 1﴿
Lần lượt chia 1990 số trên cho 1989 thì số dư chỉ có thể từ 0 đến 1988.
Theo nguyên lý Dirichlet,có 1990 số mà chỉ có 1989 số dư nên tồn tại 2 số chia 1989 có cùng số dư và hiệu của chúng chia hết cho 1989.Hiệu này được viết bởi các chữ số 1 và 0.
CMR: tồn tại 1 bội của 31 chỉ gồm toàn chữ số 0 và 1
Xét dãy số: 1; 11; 111; 1111; ...; 111...1 (32 số 1)
Ta đã biết 1 số tự nhiên khi chia cho 31 chỉ có thể có 31 loại số dư là dư 0; 1; 2; ...; 30. Có 32 số mà chỉ có 31 loại số dư nên theo nguyên lí Đirichlet sẽ có ít nhất 2 số cùng dư
Hiệu của 2 số này chia hết cho 31 và chỉ gồm toàn chữ số 0 và 1 (đpcm)
Giải theo nguyên lí Dirichlê nha các bạn
Chứng minh rằng: tồn tại một bội số của 17
a, Được viết bởi toàn các chữ số 1 và 0
b, Được viết bởi toàn các chữ số 1
CMR tồn tại một bội của 13 gồm toàn chữ số 0(giải giúp mình cẩn thận rồi mình like)
Chọn bộ 13 số sau:
1,11,...111111 (13 chữ số 1)
Đem chia 13 số trên cho 12.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 111..111 (m chữ số 2) và 111.111 (n chữ số 2) m,n trong khoảng 1 đến 13
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 12 nên
[111.111 (m chữ số 2) - 111.111 (n chữ số 2)] chia hết cho 12
=>111.11100...000 (m-n chữ số 2; n chữ số 0) chia hết cho 12
hay 111.111(m-n chữ số 2).10^n chia hết cho 12
=>111.111 (m-n chữ số 2) chia hết cho 12
=> đpcm.
Chứng minh rằng tồn tại một bội số của 17 mà:
a.gồm toàn các chữ số 1 và 0
b.gồm toàn các chữ số 1
Chứng minh rằng: tồn tại 1 bội của 1989 được viết bởi toàn các chữ số 1 và 0
Trong 1989 số được tạo bởi toàn chữ số 1
1
11
.......
1111...11 (1989 chữ số 1)
Khi lần lượt chia các số này cho 1989 ta sẽ có nhiều nhất 1989 phép chia có dư mà số dư của các phép chia này nằm trong khoảng từ 1 đến 1988. Theo nguyên lý Dirichlet thì sẽ có ít nhất 2 số khi chia cho 1989 có cùng số dư.
Giả sử ta có 2 số là số A có m chữ số 1 và số B có n chữ số 1 khi chia cho 1989 có cùng số dư và giả sử m>n
\(\Rightarrow A-B=C⋮1989\)
\(\Rightarrow C=1111...00\) (có m-n chữ số 1 và n chữ số 0) chia hết cho 1989 (dpcm)
CMR tồn tại 1 số là bội của 31 gồm toàn chữ số 7
Bạn gọi như sau:
a1=7
a2=77
a3=777
......
a32=77777.....7777(gồm 32 số 7)
Đem chia cho 31 ta có 32 số số dư
R1;R2:R3;R4;....:R32 nhưng chỉ nhận 31 giá trị(0;1;2;3;4;5;6;.....;30) nên sẽ có 2 số dư trùng nhau
chẳng hạn Rm=Rn (Với m>n) thì am-an chia hết cho 31 (vì đồng dư),ta lại có
777..7(gồm m chữ số 7)-77...7(gồm n chữ số 7)=777...7(gồm m-n số 7)00....0(gồm n số 0)=777...7 nhân 10^n chia hết cho 31
vi 10^n và 31 là hai số nguyên tố cùng nhau nên suy ra 777..7 chia hết cho 31 .
Vì bài này chỉ chứng minh chứ ko phải tìm số nhé :D
Chứng minh rằng tồn tại một bội số của 17 mà:
a)gồm toàn các chữ số 1 và 0
b)gồm toàn các chữ số 1