Cho tam giác ABC vuông tại A, AB = 12 cm, AC = 15 cm. Từ A kẻ đường cao AH vuông góc với BC. Gọi M, N lần lượt là trung điểm của AH và BH, AN cắt Cm tại O.CMR :
c, AN ⊥CM
Cho tam giác ABC vuông tại A, AB = 12 cm, AC = 15 cm. Từ A kẻ đường cao AH vuông góc với BC. Gọi M, N lần lượt là trung điểm của AH và BH, AN cắt Cm tại O.CMR :
c, AN \(⊥\)CM
Tam giác ABC vuông tại A, đường cao AH. Gọi M,N lần lượt là trung điểm AH và BH. Gọi O là giao điểm AN với CM. C/mMN Vuông góc vs ac
Xét ΔHAB có
M là trung điểm của AH(gt)
N là trung điểm của BH(gt)
Do đó: MN là đường trung bình của ΔHBA(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//AB và \(MN=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay MN\(\perp\)AC(đpcm)
Cho tam giác ABC vuồn tại A và đường cao AH biết AB=15 cm, BC=25cm.
a) Tính AH, BH
b) Từ B vẽ ddouot vuông góc BC cắt AC tại D. Vẽ tia ohaan giác góc C cắt AB, DB lần lượt tại M, N. CM: CN.CD= CM.CB
c) Gọi O là giao điểm của CD và AH. CM: Tam giác OAN cân
Cho tam giác ABC nhọn (AB<AC). các đường cao AE , BF cắt nhau tại H. gọi M là trung điểm của BC qua H vẽ đường thẳng a vuông góc với HM , a cắt AB , Ac lần lượt tại I và K. a) cm: Tam giác ABC ~ Tam giác EFC b) Qua C kẻ đường thẳng b song song với IK , b cắt AH, AB theo thứ tự tại N và D . cm : NC=ND và HI=HK c) Gọi G là giao điểm của CH và AB ,cm: AH/HE + BH/HF + CH/HG > 6
Cho tam giác ABC vuông tại A đường cao AH gọi M và N lần lượt là trung điểm AH và BH gọi O là giao điểm AN với CM. Chứng minh
a) AN vuông góc với CM
b) AH^2= 4MC.MO
Cho tam giác ABC vuông tại A đường cao AH gọi M và N lần lượt là trung điểm AH và BH gọi O là giao điểm AN với CM. Chứng minh
a) AN vuông góc với CM
b) AH^2= 4MC.MO
Cho tam giác ABC vuông tại A và đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH= 4cm CH = 9cm . a) tính DE b) CM: AD.AB=AC.AE c) Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N. Cm M là trung điểm của BH và N là trung điểm của CH. d) Tính diện tích tứ giác DEMN Mn giải hộ em câu c và d với.
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
cho tam giác ABC cân tại A (AB >AC) H là trung điểm của BC. a) Cm rằng :AH là phân giác của BAC b) Tính độ dài AH nếu BC = 4cm ,AB=cm c) Tia phân giác của góc B cắt AH tại M. CM :tam giác BMC cân d) Đường thẳng đi qua A và song song với BC cắt BM tại N. CM :AB=AN e) Kẻ MK vuông góc AC tại K. CM: MH=MK f) CM: MC vuông góc với NC
a: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là phân giác của góc BAC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là trung trực của BC
=>I nằm trên trung trực của BC
=>IB=IC
d: Xet ΔABN có góc ABN=góc ANB=góc MBC
nên ΔABN can tại A
=>AB=AN
e: Xét ΔABC co
BM,AM là phân giác
nên M là tâm đừog tròn nội tiếp
=>CM là phân giác của góc ACB
Xét ΔHCM vuông tại H và ΔKCM vuông tại K có
CM chung
góc HCM=góc KCM
=>ΔHCM=ΔKCM
=>MH=MK
Cho tam giác ABC nhọn (AB<AC). các đường cao AE , BF cắt nhau tại H. gọi M là trung điểm của BC qua H vẽ đường thẳng a vuông góc với HM , a cắt AB , Ac lần lượt tại I và K.
a) cm: Tam giác ABC ~ Tam giác EFC
b) Qua C kẻ đường thẳng b song song với IK , b cắt AH, AB theo thứ tự tại N và D . cm : NC=ND và HI=HK
c) Gọi G là giao điểm của CH và AB ,cm:
AH/HE + BH/HF + CH/HG > 6