Tìm n thuộc Z để phân số 2n+3/3n+2
a) tối giản
b) rút gọn được
giúp e với ạ!
Bài 1: Tìm n thuộc Z :
n+3/n+10 > 0
Bài 2: Tìm n thuộc Z để :
a) 8-n/n+3 > 0
b) n+1/2n-3 < 0
c) n-1/n+2 tối giản
d) n+1/n+7 rút gọn được
e) 2n+1/3n-7 tối giản
AI NHANH ĐƯỢC TICK !!! KHÔNG CẦN PHẢI LÀM HẾT !!!
mình nhanh quá đến nỗi quên trả lời đây!
Cho phân số B=\(\frac{-10}{2n+1}\)với n thuộc z
a, Tìm n để phân số B thuộc z
b, Tìm n để phân số rút gọn được
c, tìm n để phân số B tối giản
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!
tìm n thuộc Z để phân số 2n 1 3n 2 rút gọn được. giúp mình với các bạn ơi
Gọi ƯCLN(2n-1; 3n+2) là d. Ta có:
2n-1 chia hết cho d => 6n-3 chia hết cho d
3n+2 chia hết cho d => 6n+4 chia hết cho d => 6n-3+7
=> 6n-3+7-(6n-3) chia hết cho d
=> 7 chia hết cho d
Giả sử phân số rút gọn được
=> 2n-1 chia hết cho 7
=> 2n-1+7 chia hết cho 7
=> 2n+6 chia hết cho 7
=> 2(n+3) chia hết cho 7
=> n+3 chia hết cho 7
=> n = 7k - 3
Vậy để phân số trên tối giản thì n ≠ 7k - 3
Giải giả sử cả tử và mẫu đều chia hết cho số nguyên tố d (d thuộc N,d> hoặc =1)
=> 2n+1 chia hết cho d
3n +2 chia hết cho d
=>3.(2n+1) chia hết cho d
2.(3n+2) chia hết cho d
=>3.2n+3.1 chia hết cho d
2.3n+2.2 chia hết cho d
=>6n+3 chia hết cho d
6n+4 chia hết cho d
=>[(6n+4-6n+3)] chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 2n+1/3n+2 rút ngon được
\(A=\frac{2n-5}{n+3}\) (n THUỘC Z)
a,Tìm n để A là phân số
b,Tìm n thuộc Z để A có giá trị là số nguyên
c,Tìm n thuộc Z để A rút gọn được
d,Tìm n thuộc Z để A là phân số tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
Tìm n thuộc Z để :
a) 2n+3/4n+1 là phân số tối giản
b) 3n+2/7n+1 là phân số tối giản
c) 2n+7/5n+3 là phân số tối giản
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
1. Chứng minh rằng n-5/3n-14 là phân số tối giản với mọi số nguyên n.
2. Tìm số nguyên n để phân số 2n-1/3n+2 rút gọn được
Gọi ước chung lớn nhất của n - 5 và 3n - 14 là d, ta có
3 ( n - 5) - ( 3n - 14)= -1 chia hết cho d
=> d = -1 hoặc 1, do đó n - 5 và 3n - 14 là nguyên tố cùng nhau
vậy n - 5/3n - 14 là phân số tối giản
Cho biểu thức A= n+5 trên n+3 với n thuộc z
a)tìm n để A bằng 1phần2
b)tìm n thuộc z để A nhận giá trị nguyên
c)tìm n thuộc z để A rút gọn được
e)tìm n để A là phân số tối giản
\(B.\) Để n thuộc z để A nhận giá trị nguyên thì
\(n+5\)\(⋮n+3\)
\(\Rightarrow\)\(\left(n+3\right)+2⋮n+3\)
\(\Rightarrow\)\(n+3\inƯ_{\left(2\right)}\)\(=\left\{\pm1;\pm2\right\}\)
\(n+3=1\Rightarrow x=1-3=-2\)\(\in Z\)\(n+3=-1\Rightarrow x=\left(-1\right)-3=-4\)\(\in Z\)\(n+3=2\Rightarrow x=2-3=-1\in Z\)\(n+3=-2\Rightarrow x=\left(-2\right)-3=-5\in Z\)Vậy x \(\in\){ -2 ; -4 ; -1 ; -5}.
Cho A= 3n-5/2n+1(n€Z).
a. Tìm n để A có giá trị nguyên.
b. Tìm n để A là phân số tối giản.
c. Tìm n để A là phân số rút gọn được.
d. Tìm GTLN, GTNN của A.