Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Thị Huyền Mai
Xem chi tiết
Nguyễn Huyền Bảo Hân
10 tháng 5 2017 lúc 20:31

a,xét 2t/giác có:BE chung;góc ABE=HBE(đườg phân giác BE); BAE+BHE(=90) Suy ra 2 tam giác= nhau(ch-gn)

b,vì tam giác ABE=HBE, suy ra BA=BH, AE=EH, suy ra B và E là 2 điểm cách đều A và H, suy ra B và E thuộc đường trug trực của AH, suy ra BE là đtt của AH

Đỗ Trọng Hoang Anh
Xem chi tiết
Hoàng Tiến Đạt
Xem chi tiết
Khánh Linh Bùi
Xem chi tiết
nguyen thao thao nhi
Xem chi tiết
Nguyễn Văn An
Xem chi tiết

ta có tam giác BGD vuông tại G (BE ⊥ AD tại G )
=>BG^2+GD^2=BD^2
<=>BG^2+(AD/3)^2=AD^2(BD=AD=DC tính chất tam giác vuông )
<=>BG^2=8AD^2/9(1)
lại có tam giác ABG vuông tại G 
=>BG^2+AG^2=AB^2
<=>BG^2+(2AD/3)^2=6(2) 
từ (1) và (2) =>AD=3/căn 2
=>BC=2AD=6/căn2
tam giác ABC vuông tại A
=>AC^2=BC^2-AB^2
            =18-6
            =12
=>AC=2 căn 3

Nguyễn Văn An
20 tháng 3 2019 lúc 17:48

mình đang cần cm tam giác vuông bạn ạ

nguyen lan anh
Xem chi tiết
nguyễn hương trà
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2023 lúc 19:38

a: \(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^0+\widehat{BAC}\)

\(\widehat{CAD}=\widehat{DAB}+\widehat{BAC}=90^0+\widehat{BAC}\)

=>\(\widehat{BAE}=\widehat{CAD}\)

Xét ΔBAE và ΔDAC có

BA=DA

\(\widehat{BAE}=\widehat{DAC}\)

AE=AC

Do đó: ΔBAE=ΔDAC
=>BE=CD

b: Gọi giao điểm của BE với CD là H, giao điểm của BE với AC là G

ΔDAC=ΔBAE

=>\(\widehat{AEB}=\widehat{ACD}\)

Xét ΔEAG có \(\widehat{AEG}+\widehat{EGA}+\widehat{EAG}=180^0\)

Xét ΔGHC có \(\widehat{GHC}+\widehat{GCH}+\widehat{HGC}=180^0\)

=>\(\widehat{AEG}+\widehat{EGA}+\widehat{EAG}=\widehat{GHC}+\widehat{GCH}+\widehat{HGC}\)

=>\(\widehat{EAG}=\widehat{GHC}=90^0\)

=>BE vuông góc CD

Nguyễn Hữu Hoàng Hải Anh
Xem chi tiết
Trà My
28 tháng 1 2017 lúc 17:18

A B C D E K G H

a)

+) Ta có: \(\widehat{DAB}=\widehat{EAC}=90^o\)=> \(\widehat{DAB}+\widehat{BAC}=\widehat{EAC}+\widehat{BAC}\Leftrightarrow\widehat{DAC}=\widehat{EAB}\)

Xét tam giác DAC và tam giác BAE có:

AD = AB ( vì tam giác BAD vuông cân tại A )

\(\widehat{DAC}=\widehat{EAB}\) (chứng minh trên)

AE = AC ( vì tam giác CAE vuông cân tại A )

=> \(\Delta DAC=\Delta BAE\left(c.g.c\right)\)=> DC = BE (2 cạnh tương ứng)

+) Đặt H là giao điểm của DC và BE, G là giao điểm của AC và BE

Góc AGE và góc HGC đối đỉnh nên \(\widehat{AGE}=\widehat{HGC}\) (1)

\(\Delta DAC=\Delta BAE\Rightarrow\widehat{AEB}=\widehat{ACD}\) ( 2 góc tương ứng ) (2)

Tam giác AEG có: \(\widehat{AEG}+\widehat{EGA}+\widehat{GAE}=180^o\) (tổng 3 góc trong tam giác)

Tam giác HGC có: \(\widehat{GHC}+\widehat{GCH}+\widehat{HGC}=180^o\) (tổng 3 góc trong tam giác)

=>\(\widehat{AEG}+\widehat{GAE}+\widehat{GAE}=\)\(\widehat{GHC}+\widehat{GCH}+\widehat{HGC}\)

Kết hợp với (1) và (2) => \(\widehat{GAE}=\widehat{GHC}=90^o\Leftrightarrow DC⊥BE\)