Chứng minh rằng tích hai số chẵn liên tiếp thì chia hết cho 8
a) Chứng minh rằng: Tích của hai số chẵn liên tiếp thì chia hết cho 8
b) Chứng minh rằng: Tích của ba số chẵn liên tiếp thì chia hết cho 48
c) Chứng minh rằng: Tích của bốn số chẵn liên tiếp thì chia hết cho 384
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
ASDWE RHTYJNHWSAVFGB
chứng tỏ rằng:
a)tích hai số chẵn liên tiếp thì chia hết cho 8.
b)tích ba số chẵn liên tiếp thì chia hết cho 48
A)Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có:
2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
=>k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=>4k(k+1) chia hết cho 8(ĐPCM)
Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=> 4k(k+1) chia hết cho 8
a, chứng minh rằng tích của 3 số chẵn liên tiếp thì chia hết cho 48
b, chứng minh rằng tích của 4 số chẵn liên tiếp thì chia hết cho 384
chứng minh rằng :
a) 1010 - 1 chia hết cho 9
b) 109 + 2 chia hết cho 3
c) tổng hai số chẵn liên tiếp không chia hết cho 4
d) tích của 2 số tự nhiên liêp tiếp bao giờ cũng là một số chẵn
e) tích hai số chẵn liên tiếp chia hết cho 8
a) Ta có: \(10^{10}=10...0\) nên \(10^{10}-1=10...0-1=99...9\)
Nên: \(10^{10}-1⋮9\)
b) Ta có: \(10^{10}=10...0\) nên: \(10^{10}+2=10...0+2=10...2\)
Mà: \(1+0+...+2=3\)
Nên: \(10^{10}+2⋮3\)
c) Gọi số chẵn đó \(a\) số chẵn tiếp theo là:\(a+2\)
Mà tổng của 2 số chẵn đó là:
\(a+a+2=2a+2=2\left(a+1\right)\) không chia hết cho 4 nên
Tổng của 2 số chẵn liên tiêp ko chia hết cho 4
d) Gọi hai số tự nhiên đó là: \(a,a+1\)
Tích của 2 số tự nhiên đó là:
\(a\left(a+1\right)=a^2+a\)
Nếu a là số lẻ thì \(a^2\) lẻ nên \(a^2+a\) là chẳn
Nếu a là số chẵn thì \(a^2\) chẵn nên \(a^2+a\) là chẵn
Vậy tích của hai số liên tiếp là chẵn
e) Gọi hai số đó là: \(2a,2a+2\)
Tích của hai số đó là:
\(2a\cdot\left(2a+2\right)=4a^2+4a=4a\left(a+1\right)\)
4a(a+1) chia hết cho 8 nên
Tích của hai số tự nhiên liên tiếp chia hết cho 8
d) Gọi một số tự nhiên bất kỳ là a
\(\Rightarrow\) Số tự nhiên liền kề là a+1
Nếu a là số lẻ thì a+1 là số chẵn
\(\Rightarrow a\left(a+1\right)\) là số chẵn
Nếu a là số chẵn thì \(a\left(a+1\right)\) là số chẵn
Vậy tích hai số TN liên tiếp bao giờ cũng là một số chẵn
e) Gọi hai số chẵn liên tiếp lần lượt là 2a và 2a+2 ( a là một số TN bất kỳ )
Ta có \(2a\left(2a+2\right)=2a.2\left(a+1\right)=4a\left(a+1\right)\)
Ta chứng minh được tích hai số TN liên tiếp bao giờ cũng là một số chẵn
\(\Rightarrow a\left(a+1\right)\) có dạng 2k ( k bất kỳ )
\(\Rightarrow2a\left(2a+2\right)=8k⋮8\)
Vậy tích hai số chẵn liên tiếp chia hết cho 8
Chứng minh rằng tích của hai số chẵn liên tiếp chia hết cho 8.
gọi số chẵn thứ nhất là 2n
số chẵn thứ 2 là 2n+2
Tích của chúng là A(n) = 2n (2n + 2 ). Ta có 8 = 4.2
Do đó ta viết : A(n)= 4.n (n+1)
A(n) là tích của hai thừa số : một thừa số là 4, chia hết cho 4 và một thừa số n (n+1) chia hết cho 2. Vì vậy A(n) = 4.n (n+1) chia hết cho 4.2= 8 (đpcm)
Gọi 2k và 2k + 2 là 2 số chẵn liên liếp, ta có :
2k x ( 2k + 2 ) = 4k^2+ 4k = 4k ( k + 1)
Ta có k (k + 1) luôn luôn chia hết cho 2
=> 4 x k x ( k + 1) chia hết cho 2 x 4 = 8
Vậy 4k (k + 1) chia hết cho 8
=> 2 số chẵn liên tiếp luôn chia hết cho 8
Gọi hai số chắn đó là: 2n và 2n + 2
=> Tích hai số đó là:
2n(2n + 2) = 4n2 + 4n = 4n(n + 1)
Lại có 2n + 2 chia hết cho 2
=> n + 1 chia hết cho 2 (1)
Lại có: 4n chia hết cho 4 (2)
Từ (1) và (2)
=> 4n(n + 1) chia hết cho 2 x 4 = 8 (đpcm)
Chúc bạn học tốt !!!
Chứng minh rằng: Tích của 3 số chẵn liên tiếp thì chia hết cho 8
gọi 3 số là:a ; a+2 ; a+4
ta có :
a.(a+2).(a+4)
vì a là số chẵn =>\(a⋮2\)=>\(\text{a.(a+2).(a+4) }⋮2\)
vì a ; a+2 ; a+4 là các số chẵn liên tiếp => có 1 số chia hết cho 4 => \(\text{a.(a+2).(a+4) }⋮4\)
vì \(\text{a.(a+2).(a+4) }⋮2;4\Rightarrow\text{a.(a+2).(a+4) }⋮2x4\Rightarrow\text{a.(a+2).(a+4) }⋮8\)
Gọi 3 số chẵn liên tiếp là 2a;2a+2;2a+4
ta có:2a.(2a+2).(2a+4)=(2a.2a.2a).(2+4)=8a.6 chia hết cho 8
vậy tích 3 số chẵn liên tiếp sẽ chia hết cho 8
Chứng minh rằng tích hai số chẵn TN liên tiếp chia hết cho 8
Chứng minh rằng :
Tích hai số chẵn liên tiếp chia hết cho 8
a, chứng tỏ rằng tích của hai số chẵn liên tiếp thì chia hết cho 8
b, Chứng tỏ rằng tích cuar ba số tự nhiên liên tiếp thì chia hết cho 6
c, n2 + n -1