Tìm giá trị nhỏ nhất của:
P=1/a^2+b^2 + 1/2an biết a+b=1 và a,b là số dương
Bài 5 : Cho a và b là các số nguyên có 2 chữ số . Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của tổng a + b ?
số lớn nhất có 2 cs là 99 thì a+b=9+9=18
số bé nhất có 2 cs là -99 thì a+b=(-9)+(-9)=-18
Cho x+y=1 , x>0 , y>0 . Tìm giá trị nhỏ nhất của biểu thức P= \(\frac{a^2}{x}+\frac{b^2}{y}\) (a và b là hằng số dương đã cho)
Áp dụng bđt \(\frac{m^2}{p}+\frac{n^2}{q}\ge\frac{\left(m+n\right)^2}{p+q}\) được
\(P=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)
Dấu "=" khi ay = bx
Cho a, b, c là các số thực dương. Tìm giá trị nhỏ nhất của A biết:
\(A=\frac{1}{4a+2b+\sqrt[4]{2bc}}-\frac{4}{8+a+2b+3c}+\frac{1}{4+b+2c}\)
Tổng giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số f(x) = (x-6) x 2 + 4 trên đoạn [0;3] có dạng a - b c với a là số nguyên và b, c là các số nguyên dương. Tính S = a + b + c.
A. 4
B. -2
C. -22
D. 5
Chọn A
Hàm số f(x) = (x-6) x 2 + 4 xác định và liên tục trên đoạn [0;3].
Suy ra
với a là số nguyên và b, c là các số nguyên dương nên
a = - 12, b = 3, c = 13. Do đó: S = a + b + c = 4.
Xét các số thực dương a, thỏa mãn a+b=1 . Tìm giá trị nhỏ nhất của biểu thức P=a^2 +b
\(a+b=1\Leftrightarrow b=1-a\\ \Leftrightarrow P=a^2+1-a=\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\\ P_{min}=\dfrac{3}{4}\Leftrightarrow a=\dfrac{1}{2}\Leftrightarrow b=\dfrac{1}{2}\)
Cho biết a và b là các số có một chữ số. Tìm giá trị lớn nhất của biểu thức a+b, a * b
Theo bài, a khác b
Nếu muốn các biểu thức nhân, cộng lớn nhất thì các số để nhân,cộng cũng phải lớn nhất
2 số lớn nhất có 1 chữ số là 9 và 8 (a khác b)
Ta có: 9 + 8 = 17 ; 9 x 8 = 72
Vậy giá trị lớn nhất của a + b là 17, của a x b là 72
Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :
\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .
Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :
\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .
Bài 4 : Cho các số dương a,b,c . Chứng minh :
\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1
Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)
Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
neu de bai bai 1 la tinh x+y thi mik lam cho
đăng từng này thì ai làm cho
We have \(P=\frac{x^4+2x^2+2}{x^2+1}\)
\(\Rightarrow P=\frac{x^4+2x^2+1+1}{x^2+1}\)
\(=\frac{\left(x^2+1\right)^2+1}{x^2+1}\)
\(=\left(x^2+1\right)+\frac{1}{x^2+1}\)
\(\ge2\sqrt{\frac{x^2+1}{x^2+1}}=2\)
(Dấu "="\(\Leftrightarrow x=0\))
Vậy \(P_{min}=2\Leftrightarrow x=0\)
Bài 1 :
a) Tìm giá trị nhỏ nhất của A = l x - 2 l + 5
b) Tìm giá trị nhỏ nhất của B = 12 - l x + 4 l
c) Tìm giá trị nhỏ nhất của C = (căn bậc hai x) + 1
Bài 1: Tìm x số nguyên biết:
a) A=x2 + 2021 đạt giá trị nhỏ nhất.
b) B=2022 - 20x20 - 22x22 đạt giá trị nhỏ nhất.
a) Vì với mọi giá trị nguyên của x nên
Dấu “=” xảy ra khi x2 = 0 hay x = 0.
Vậy A đạt giá trị nhỏ nhất 2 021 tại x = 0.
b) Vì với mọi giá trị nguyên của x nên với mọi giá trị nguyên của x.
Vì với mọi giá trị nguyên của x nên với mọi giá trị nguyên của x.
Do đó với mọi giá trị nguyên của x.
Suy ra với mọi giá trị nguyên của x.
Dấu “=” xảy ra khi x22 = 0 và x20 = 0 hay x = 0.
Vậy B đạt giá trị lớn nhất bằng 2 022 khi x = 0.