cho tg ABC nhọn d/cao AH ,vẽ ra ngoài các tg vuông cân tại B và c là tg ABE, Trên tia đối của tia AH lấy AI=BC
a)c/m tg ABI =tgBEC
b)BI=CEva BI vuông góc với CE
c)AH,BF,CE thang hang
- Cho tg ABC cân tại A, cả 3 góc đều nhọn. Về phía ngoài tg, vẽ tg ABE vuông cân tại B, Gọi H là trung điểm BC. Trên tia đối AH, lấy I sao cho AI = BC
a) tg BAI = BEC
B) C/m BI vuông góc CE
Cho △ nhọn ABC về phía ngoài của △ vẽ các △ vuông cân ABE & ACF vuông ở B & C . Kẻ AH vuông góc với BC, trên tia đối tia AH lấy điểm I sao cho AI=BC . CM
a, △ABI= △BEC
b, BI=CE và BI ⊥ CE
c, 3 đường thẳng AH,CE,BF đồng quy
a)Ta có: \(\widehat{AHB=90^O}\)
Theo tính chất goác ngoài của tam giác ta có:
\(\widehat{IAB}\)= \(\widehat{AHB}\)+ \(\widehat{HBA}\)= \(90^o\)+\(\widehat{HBA}\)=\(\widehat{EBA}\)+ \(\widehat{HBA}\)= \(\widehat{CBE}\)
xét xem tam giác ABI và BEC có
AI = BC (gt)
BA= EB( gt)
\(\widehat{IAB}\)= \(\widehat{CBE}\)(cmt)
\(\Rightarrow\Delta ABI\)= \(\Delta BEC\)( c - g - c )
a) Do \(\Delta ABI\)=\(\Delta BEC\)\(\Rightarrow\)\(BI\)=\(EC\)
Gọi giao điểm của EC với AB và BI lần lượt là J và K
\(\Delta ABI\)= \(\Delta BEC\)\(\Rightarrow\)\(\widehat{KBJ}\)= \(\widehat{BEK}\)
Vậy thì \(\widehat{KBJ}\)+ \(\widehat{KJB}\)= \(\widehat{BEK}\)+ \(\widehat{KJB}\)= \(90^O\)
Suy ra \(\widehat{BKJ}\)=\(90^O\)hay \(BI\)\(\)vuông góc với \(CE\)
c) Chứng minh hoàn toàn tương tự ta có: \(IC\)vuông góc với \(BF\)
Gọi giao điểm IC và BF là T.
Xét xem tam giác IBC có IH , CK, BT là đường cao nên chúng đồng quy tại 1 điểm .
Vậy AH, EC, BF đồng quy tại 1 điểm
Cho tam giác nhọn ABC , AH là đường cao . Về phía ngoài của của tam giác vẽ các tam giác vuông cân ABE và ACF , vuông ở B và C . Trên tia đối của AH lấy điểm I sao cho AI=BC. Chứng minh rằng:
a) Tam giác ABI = Tam giác BEC
b) BI=CE và BI vuông góc với CE
c) Ba đường thẳng AH,CE,BF cắt nhau tại 1 điểm.
a) Ta có \(\widehat{AHB}=90^o\)
Theo tính chất góc ngoài của tam giác, ta có:
\(\widehat{IAB}=\widehat{AHB}+\widehat{HBA}=90^o+\widehat{HBA}=\widehat{EBA}+\widehat{HBA}=\widehat{CBE}\)
Xét tam giác ABI và tam giác BEC có:
AI = BC (gt)
BA = EB (gt)
\(\widehat{IAB}=\widehat{CBE}\) (cmt)
\(\Rightarrow\Delta ABI=\Delta BEC\left(c-g-c\right)\)
b) Do \(\Delta ABI=\Delta BEC\Rightarrow BI=EC\)
Gọi giao điểm của EC với AB và BI lần lượt là J và K.
Do \(\Delta ABI=\Delta BEC\Rightarrow\widehat{KBJ}=\widehat{BEK}\)
Vậy thì \(\widehat{KBJ}+\widehat{KJB}=\widehat{BEK}+\widehat{KJB}=90^o\)
Suy ra \(\widehat{BKJ}=90^o\) hay \(BI\perp CE\)
c) Chứng minh hoàn toàn tương tự ta có \(IC\perp BF\)
Gọi giao điểm của IC và BF là T.
Xét tam giác IBC có IH, CK, BT là các đường cao nên chúng đồng quy tại một điểm.
Vậy AH, EC, BF đồng quy tại một điểm.
Vẽ hình đi bạn
Rồi mình giúp bạn làm
Vẽ hình xong gửi tin nhắn cho mình
:) Chúc bạn học tôt
@@
Cho tam giác ABC nhọn , vẽ đường cao AH, về phía ngoài của tam giác vẽ các tam giác vuông cân ABE và ACF vuông ở B và C. Trên tia đối của AH lấy điểm I sao cho AI= BC. Chứng minh rằng:
a, Tam giác ABI= Tam giác BEC
b, BI=CE và BI vuông góc với CE
c, 3 đường thẳng AH, CE và BF cắt nhau tại 1 điểm
a) Ta có \(\widehat{AHB}=90^o\)
Theo tính chất góc ngoài của tam giác, ta có:
\(\widehat{IAB}=\widehat{AHB}+\widehat{HBA}=90^o+\widehat{HBA}=\widehat{EBA}+\widehat{HBA}=\widehat{CBE}\)
Xét tam giác ABI và tam giác BEC có:
AI = BC (gt)
BA = EB (gt)
\(\widehat{IAB}=\widehat{CBE}\) (cmt)
\(\Rightarrow\Delta ABI=\Delta BEC\left(c-g-c\right)\)
b) Do \(\Delta ABI=\Delta BEC\Rightarrow BI=EC\)
Gọi giao điểm của EC với AB và BI lần lượt là J và K.
Do \(\Delta ABI=\Delta BEC\Rightarrow\widehat{KBJ}=\widehat{BEK}\)
Vậy thì \(\widehat{KBJ}+\widehat{KJB}=\widehat{BEK}+\widehat{KJB}=90^o\)
Suy ra \(\widehat{BKJ}=90^o\) hay \(BI\perp CE\)
c) Chứng minh hoàn toàn tương tự ta có \(IC\perp BF\)
Gọi giao điểm của IC và BF là T.
Xét tam giác IBC có IH, CK, BT là các đường cao nên chúng đồng quy tại một điểm.
Vậy AH, EC, BF đồng quy tại một điểm.
Cho tam giác ABC nhọn, AH là đường cao. Về phía ngoài của t.giác vẽ các t. giác vuông cân ABE và ACF, vuông ở B và C. Trên tia đối ia AH lấy điểm I sao cho AI = BC . Chứng minh:
a, T.giác ABI = t.giác BEC
b, BI = CE và ,BI vuông góc vs CE
c, Ba đường thẳng AH , CE , BF cắt nhau tại một điểm
Vẽ hình cho mk vs bn ơi.....Mk k vẽ đc
Ui pn Trần Hồ Thùy Trang ko bít vẽ hình bài này á ?
Cho tam giác nhọn ABC. Về phía ngoài tam giác vae các tam giác vuông cân ABE và ACF ở B và C. Vẽ AH vuông góc BC tại H, trên tia đối của tia AH, lấy điểm I sao cho AI=BC.CM
a,Tam giác ABI= Tam giác BEC
b,BI=CE và BI vuông góc với CE
c,Ba đường thẳng AH,CE,BF cùng đi qua 1 điểm
MÌNH CẦN GẤP GIÚP MÌNH NHA
Cho tam giác ABC nhọn,AH vuông góc BC tại H. Về phía ngoài của tam giác,vẽ các tam giac vuông cân ABE và ACF vuông ở B và C. Trên tia đối của tia AH lấy I sao cho AI=BC. CMR
a) Tam giác ABI = tam giác BEC
b) BI=CE và Bi vuông góc với CE
c) AH,CE,BF cắt nhau tại 1 điểm
GIÚP MÌNH CÂU C) NHA !!!
AI LÀM ĐÚNG VÀ DỄ HIỂU , MÌNH SẼ TICK
1. Cho tg ABC cân tại A , đường cao AH .Biết AB =5cm ; BC = 6cm.
a) Tính độ dài các đoạn thẳng BH , AH
b) Gọi G là trọng tâm của tg ABC . C/m rằng ba điểm A , G , H thẳng hàng .
2. Cho tg ABC cân tại A . Gọi M là trung điểm của cạnh BC .
a) C/m : tg ABM = tg ACM
b) Từ M vẽ MH vuông góc với AB và MK vuông góc với AC , C/m BH = CK.
c) Từ B vẽ BP vuông góc với AC , BP cắt MH tại I.C/m tg IBM cân.
3. Cho tg ABC cân tại A ( góc A < 90 độ) , vẽ BD vuông góc với AC và CE vuông góc AB .Gọi H là giao điểm của BD và CE.
a) C/m : tg ABD = tg ACE
b) C/m tg AED cân
c) C/m AH là đường trung trực của ED.
d) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.C/m góc ECB = góc DKC.
GIÚP MK VS MK ĐANG CẦN RẤT GẤP!!!!!!!!!!!!
cho tam giác nhọn ABC.Về phía ngoài của tam giác vẽ các tam giác vuông cân ABE và ACF vuông ở B và C.Có AH vuông góc với BC, trên tia đối của tia AH lấy điểm I sao cho AI=BC.Chứng minh:
a)tam giác ABI=tam giác BEC
b) BI=CE và BI vuông góc với CE
c) Ba điểm thẳng hàng AH,CE,BF cắt nhau tại 1 điểm
Em tham khảo tại đây nhé.
Câu hỏi của Đức Tạ - Toán lớp 7 - Học toán với OnlineMath