Cho đa thức a(x) thỏa mãn : x.a(x+8) = (x-5).a(x). Chứng minh rằng đa thức a(x) có ít nhất 2 nghiệm
Cho đa thức A(x) khác đa thức không ,thỏa mãn x.A(x-2)=(x-4).A(x) vs mọi x .Cmr A(x) có ít nhất 2 nghiệm
Có đa thức A (x) thỏa mãn (x-4) A (x) = (x+2) A (x-1) chứng minh rằng đa thức A (x) có ít nhất 2 nghiệm phân biệt
Xét (x-4)A(x)=(x+2)A(x-1)
Thay x=4 vào đa thức (x-4)A(x)=(x+2)A(x-1) ta có:
(4-4)A(4)=(4+2)A(4-1)
=>0A(4)=6A(3)
=>0= A(3)
=> x=3 là một nghiệm của đa thức A(x) (1)
Thay x=-2 vào đa thức (x-4)A(x)=(x+2)A(x-1) ta có:
(-2-4)A(-2)=(-2+2)A(-2-1)
=>-6A(-2)=0A(-3)
=>-6A(-2)=0
=>A(-2)=0
=> x=-2 là một nghiệm của đa thức A(x) (2)
Từ (1) và (2)=> đa thức A(x) có ít nhất 2 nghiệm
a) Cho f(x) thỏa mãn: x.f(x-2) = (x-4) f(x)
Chứng minh rằng: Đa thức có ít nhất 2 nghiệm
b) Biết (x-1) . f(x) = (x+4) . f(x+8) với mọi x
Chứng minh rằng: f(x) có ít nhất 2 nghiệm
Cho đa thức P(x) thỏa mãn điều kiện (x−2)P(x−1) = (x−5)P(x+8) với mọi x. Chứng minh rằng P(x) có ít nhất 5 nghiệm.
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Cho đa thức h(x) thỏa mãn x.h(x+1) = (x+2).h(x)
Chứng minh rằng đa thức h(x) có ít nhất 2 nghiệm
x=0⇒0.h(1)=2.h(0)=0⇒h(0)=0x=0⇒0.h(1)=2.h(0)=0⇒h(0)=0=> x=0 là nghiệm
x=−2⇒−2h(−1)=0.h(−3)⇒h(-1)=0=> x=-1 là nghiệm
Vậy đa thức f(x) có hai nghiệm x={0,-1} => dpcm
Vậy h(x) có 2 nghiệm nhé. Sorry viết nhầm
@Trần Thùy Linh : tên giống con lớp trưởng lớp t vl
chứng minh rằng đa thức A(x) có ít nhất 3 nghiệm nếu biến
(x2- 4) . A(x) = x.A (x- 3)
Cho đa thức f(x) thỏa mãn điều kiện (x-1).f(x)= (x+4).f(x+8) . chứng minh rằng đa thức f(x) có ít nhất một nghiệm là số nguyên tố