Giải phương trình :
\(\left(z-i\right)^2+4=0\) trên tập số phức
Giải phương trình sau trên tập số phức :
\(\left(1-i\right)z+\left(2-i\right)=4-5i\)
suy ra (1-i)z= (4-5i)-(2-i)
(1-i)z =2-4i
z= (2-4i)/(1-i)
z= 3-i
Giải phương trình: ( z - i ) 2 + 4 = 0 trên tập số phức.
(Đề thi tốt nghiệp THPT năm 2011)
Giải các phương trình sau trên tập số phức :
a) \(\left(3+2i\right)z-\left(4+7i\right)=2-5i\)
b) \(\left(7-3i\right)z+\left(2+3i\right)=\left(5-4i\right)z\)
c) \(z^2-2z+13=0\)
d) \(z^4-z^2-6=0\)
a) (3 + 2i)z – (4 + 7i) = 2 – 5i
⇔(3+2i)z=6+2i
<=> z = \(\dfrac{\text{6 + 2 i}}{\text{3 + 2 i}}\) = \(\dfrac{22}{13}\) - \(\dfrac{6}{13}\)i
b) (7 – 3i)z + (2 + 3i) = (5 – 4i)z
⇔(7−3i−5+4i)=−2−3i
⇔z= \(\dfrac{\text{− 2 − 3 i}}{\text{2 + i}}\) = \(\dfrac{-7}{5}\) - \(\dfrac{4}{5}i\)
c) z2 – 2z + 13 = 0
⇔ (z – 1)2 = -12 ⇔ z = 1 ± 2 √3 i
d) z4 – z2 – 6 = 0
⇔ (z2 – 3)(z2 + 2) = 0
⇔ z ∈ { √3, - √3, √2i, - √2i}
Giải các phương trình sau trên tập số phức :
a) \(\left(3+4i\right)z+\left(1-3i\right)=2+5i\)
b) \(\left(4+7i\right)z-\left(5-2i\right)=6iz\)
a) (3 + 4i)z = (2 + 5i) – (1 – 3i) = 1 + 8i
Vậy z=1+8i3+4i=(1+8i)(3−4i)25=3525+2025i=75+45iz=1+8i3+4i=(1+8i)(3−4i)25=3525+2025i=75+45i
b) (4 + 7i)z – (5 – 2i) = 6iz ⇔ (4 + 7i)z – 6iz = 5 – 2i
⇔ (4 + i)z = 5 – 2i
⇔z=5−2i4+i=(5−2i)(4−i)17⇔z=1817−1317i
Trên tập số phức, cho phương trình sau : ( z + i)4 + 4z2 = 0. Có bao nhiêu nhận xét đúng trong số các nhận xét sau?
1. Phương trình vô nghiệm trên trường số thực R.
2. Phương trình vô nghiệm trên trường số phức C
3. Phương trình không có nghiệm thuộc tập số thực.
4. Phương trình có bốn nghiệm thuộc tập số phức.
5. Phương trình chỉ có hai nghiệm là số phức.
6. Phương trình có hai nghiệm là số thực
A. 0.
B. 1.
C. 3.
D. 2.
Chọn D.
Do đó phương trình có 2 nghiệm thực và 4 nghiệm phức. Vậy nhận xét 4, 6 đúng.
Giải phương trình hệ số phức
\(z^2-8\left(1-i\right)z+63-16i=0\)
\(\Delta=\left(4-4i\right)^2-\left(63-16i\right)=-63-16i\)
\(r=\left|\Delta'\right|=\sqrt{63^2-16^2}=65\)
Phương trình \(y^2=-63-16i\)
Có nghiệm \(y_{1,2}=\pm\sqrt{\frac{65-63}{2}}+i\sqrt{\frac{65+63}{2}}=\pm\left(1-8i\right)\)
Kéo theo
\(z_{1,2}=4-4i\pm\left(1-8i\right)\)
Do đó \(z_1=5-12i,z_2=3+4i\)
Ta cso thể dùng cách khác để giải phương trình bậc hai trên :
\(\Delta'=\left(4-4i\right)^2-\left(63-16i\right)=-63-16i\)
Tìm căn bậc hai của -63-16i, tức là tìm \(z=x+yi,z^2=-63-16i\)
\(\Rightarrow x^2-y^2+2xyi=-63-16i\)
\(\Rightarrow\begin{cases}x^2-y^2=-63\\xy=-8\end{cases}\)
\(\Rightarrow\begin{cases}x=\pm1\\y=\pm8\end{cases}\)
\(\Delta'\)
có 2 căn bậc 2 là \(1-8i,-1+8i\)
Phương trình có hai nghiệm
\(z_1=4\left(1-i\right)+\left(1-8i\right)=5-12i\)
\(z_2=4\left(1-i\right)-\left(1-8i\right)=3+4i\)
Giải các phương trình sau trên tập số phức :
a) \(3x^2+\left(2+2i\sqrt{2}\right)x-\dfrac{\left(1+i\right)^3}{1-i}=i\sqrt{8}x\)
b) \(\left(1-ix\right)^2+\left(3+2i\right)x-5=0\)
Giải phương trình sau trên tập số phức:
(1 – i)z + (2 – i) = 4 – 5i
(Đề thi tốt nghiệp THPT năm 2011)
(1 − i)z + (2 − i) = 4 − 5i
⇔ (1 − i)z = 4 − 5i – 2 + i
⇔(1 − i)z = 2 − 4i
Giải phương trình sau trên tập số phức: (1 – i)z + (2 – i) = 4 – 5i (Đề thi tốt nghiệp THPT năm 2011)
(1 − i)z + (2 − i) = 4 − 5i
⇔ (1 − i)z = 4 − 5i – 2 + i
⇔(1 − i)z = 2 − 4i