Chương 4: SỐ PHỨC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thái Dương

Giải phương trình hệ số phức 

\(z^2-8\left(1-i\right)z+63-16i=0\)

Nguyễn Hòa Bình
25 tháng 3 2016 lúc 3:42

\(\Delta=\left(4-4i\right)^2-\left(63-16i\right)=-63-16i\)

\(r=\left|\Delta'\right|=\sqrt{63^2-16^2}=65\)

Phương trình \(y^2=-63-16i\)

Có nghiệm \(y_{1,2}=\pm\sqrt{\frac{65-63}{2}}+i\sqrt{\frac{65+63}{2}}=\pm\left(1-8i\right)\)

Kéo theo

\(z_{1,2}=4-4i\pm\left(1-8i\right)\)

Do đó \(z_1=5-12i,z_2=3+4i\)

Ta cso thể dùng cách khác để giải phương trình bậc hai trên :

\(\Delta'=\left(4-4i\right)^2-\left(63-16i\right)=-63-16i\)

Tìm căn bậc hai của -63-16i, tức là tìm \(z=x+yi,z^2=-63-16i\)

\(\Rightarrow x^2-y^2+2xyi=-63-16i\)

\(\Rightarrow\begin{cases}x^2-y^2=-63\\xy=-8\end{cases}\)

\(\Rightarrow\begin{cases}x=\pm1\\y=\pm8\end{cases}\)

\(\Delta'\)

có 2 căn bậc 2 là \(1-8i,-1+8i\)

Phương trình có hai nghiệm 

\(z_1=4\left(1-i\right)+\left(1-8i\right)=5-12i\)

\(z_2=4\left(1-i\right)-\left(1-8i\right)=3+4i\)


Các câu hỏi tương tự
Lê Thị Kim Chi
Xem chi tiết
AllesKlar
Xem chi tiết
Trần Minh Ngọc
Xem chi tiết
AllesKlar
Xem chi tiết
Luân Trần
Xem chi tiết
AllesKlar
Xem chi tiết
Nguyễn Tùng Anh
Xem chi tiết
Pham Tien Dat
Xem chi tiết
Xem chi tiết