Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 10 2019 lúc 10:31

a) Từ đồ thị hàm số (H), để có hình (H’) nhận y = 2 là tiệm cận ngang và x = 2 là tiệm cận đứng, ta tịnh tiến đồ thị (H) song song với trục Oy lên trên 3 đơn vị, sau đó tịnh tiến song song với trục Ox về bên phải 3 đơn vị, ta được các hàm số tương ứng sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Lấy đối xứng hình (H’) qua gốc O, ta được hình (H’’) có phương trình là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 8 2018 lúc 14:00

Đáp án C

Xét đồ thị hàm số  y = 3 − x x + 1 đường tiệm cận ngang y = − 1 và đường tiệm cận đứng x = − 1 . Gọi I − 1 ; − 1  là giao điểm của hai đường tiệm cận của đồ thị (H). Gọi I ' 2 ; 2  là giao điểm của hai đường tiệm cận của đồ thị  

Phép dời hình đồ thị (H )thành là phép tịnh tiến theo vecto   v → = I I ' → = 3 ; 3

Giả sử đồ thị (H')   có phương trình y = a x + b c x + d ; a d − b c ≠ 0

⇒ a c = 2 − d c = 2 ⇒ a = 2 c − d = 2 c ⇒ y = 2 c x + b 6 c − 2 c  

Lấy  

A 3 ; 0 ∈ H ⇒ A ' 6 ; 3 ∈ H ' ⇒ 12 c + b 6 c − 2 c = 3 ⇒ b = 0

Vậy H ' : y = 2 x x − 2 . Lấy đối xứng (H') qua gốc toạ độ ta được  H ' ' : − y = − 2 x − x − 2 ⇒ y = − 2 x x + 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 2 2018 lúc 18:15

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 12 2019 lúc 6:00

Từ đồ thị hàm số (H), để có hình (H’) nhận y = 2 là tiệm cận ngang và x = 2 là tiệm cận đứng, ta tịnh tiến đồ thị (H) song song với trục Oy lên trên 3 đơn vị, sau đó tịnh tiến song song với trục Ox về bên phải 3 đơn vị, ta được các hàm số tương ứng sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12 

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 8 2018 lúc 10:43

Đáp án B

Sai lầm thường gặp: Tập xác định D = ℝ \ 3 .

Đạo hàm y ' = − 2 x − 3 2 ,0, ∀ x ∈ D ⇒  Hàm số nghịch biến trên ℝ \ 3 , hoặc làm số nghịch biến trên − ∞ ; 3 ∪ 3 ; + ∞ . Hàm số không có cực trị.

Tiệm cận đứng: x=3; tiệm cận ngang:  y=1. Đồ thị hàm số nhận giao điểm   I 3 ; 1  của hai đường tiệm cận làm tâm đối xứng.

Từ đó nhiều học sinh kết luận các mệnh đề 1 , 3 , 4  đúng và chọn ngay A.

Tuy nhiên đây là phương án sai.

Phân tích sai lầm:

Mệnh đề (1) sai, sửa lại: hàm số nghịch biến trên mỗi khoảng − ∞ ; 3  và 3 ; + ∞ . Học sinh cần nhớ rằng, ta chỉ học định nghĩa hàm số đồng biến (nghịch biến) trên khoảng, đoạn, nửa khoảng; chứ không có trên những khoảng hợp nhau.

Mệnh đề (2) sai. Đồ thị hàm số có một tiệm cận đứng là x=3, một tiệm cận ngang là y=1.

Mệnh đề 3 , 4  đúng.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 10 2017 lúc 4:39

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 9 2018 lúc 15:30

có 2 nghiệm phân biệt, do đó đồ thị hàm số có 2 TCĐ

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 6 2018 lúc 4:55

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 3 2019 lúc 10:52