a/ x-2/ lớn hơn hoặc bằng 1
b /2-x/<3
c /x+1/ bé hơn hoặc bằng 4
d /x+6/<2
Tìm x thuộc Z biết:
a,|x-2| nhỏ hơn hoặc bằng 2
b,|x-3| nhỏ hơn hoặc bằng 0
c,2 lớn hơn hoặc bằng |x-1| nhỏ hơn hoặc bằng 3
d, -1 lớn hơn hoặc bằng |x-2| nhỏ hơn hoặc bằng 2
a) /x-2/ nhỏ hơn hoặc bằng 2
vì /a/ \(\ge\)0
mà /x-2/\(\le\)2
\(\Rightarrow\)/x-2/={0;1;2}
Nếu /x-2/=0
x-2 =0
\(\Rightarrow\)x=2
Nếu /x-2/=1
x-2 =1
\(\Rightarrow\)x=3
Nếu /x-2/=2
x-2 =2
\(\Rightarrow\)x=4
Vì x\(\in\)Z nên x={2;3;4}
b) /x-3/ nhỏ hơn hoặc bằng 0
Vì /a/\(\ge\)0
mà /x-3/\(\le\)0
nên /x-3/=0
x-3 =0
\(\Rightarrow\)x=3
1) Giải theo cách lớp 8 nhé:
Áp dụng BĐT (a + b)² >= 4ab (với a,b là các số không âm). Dấu "=" xảy ra khi a = b. C/m đơn giản thôi, bạn chuyển vế đưa về hằng đẳng thức đúng.
(x + y)² >= 4xy
(y + z)² >= 4yz
(x + z)² >= 4xz
Nhân theo vế 3 BĐT trên có: (x + y)²(y + z)²(x + z)² >= 64x²y²z²
=> (x + y)(y + z)(z + x) >= 8xyz (vì x,y,z >= 0)
2) ĐK để các phân thức có nghĩa: a + b; b + c; c +a khác 0.
Ta có: a²/(a +b) + b²/(b + c) + c²/(c + a) = b²/(a +b) + c²/(b + c) + a²/(c + a) (*)
<=> a²/(a +b) + b²/(b + c) + c²/(c + a) - b²/(a +b) - c²/(b + c) - a²/(c + a) = 0
<=> (a² - b²)/(a + b) + (b² - c²)/(b + c) + (c² - a²)/(c + a) = 0
<=> (a - b)(a + b)/(a + b) + (b - c)(b + c)/(b + c) + (c - a)(c + a)/(c + a) = 0
<=> a - b + b - c + c - a = 0
<=> 0 = 0 (1)
a,Cho A +B lớn hơn hoặc bằng 1.Chứng minh A^2 + B^2 lớn hơn hoặc bằng 1
b,Cho x^2 + y^2 =1.Chứng minh (x+y)^2 nhỏ hơn hoặc bằng 2
Câu a)
Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b
Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1
Câu b) Áp dụng BĐT Bunhiacopxki ta có
(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2
Dấu "=" xảy ra <=> x = y
câu1 : cần sửa lại là A2 + B2 \(\ge\frac{1}{2}\)
Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)
<=> A2 + B2 + 2A.B \(\le\) 2. (A2 + B2)
<=> 0 \(\le\) A2 + B2 - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng
b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm
1)Với x>-3.Chứng minh :2x/3 + 9/(x-3)^2 lớn hơn hoặc bằng 1
2)Cho a lớn hơn hoặc bằng 3,ab lớn hơn hoặc bằng 6;abc lớn hơn hoặc bằng 6.Chứng minh rằng a+b+c lớn hơn hoặc bằng 6
1) Đề sai, thử với x = -2 là thấy không thỏa mãn.
Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:
\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)
\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)
Không thể xảy ra dấu đẳng thức.
Các bạn giúp tớ giải bài tập nha
1. Cho a,b,c > 0
CM: a) 1 < a/b+c + b/a+c + c/a+b < 2
2. Cho x lớn hơn hoặc bằng y lớn hơn hoặc bằng 1
CMR: x + 1/x lớn hơn hoặc bằng y + 1/y
tính giá trị biểu thức
a) |x +3 | +x-5 với x <3
b) | 2 + x| -x+1 với x lớn hơn hoặc bằng 2
c)|x +1| + |x -2 | với x nhỏ hơn hoặc bằng -1 lớn hơn hoặc bằng 2
|x -1 | = |x -2 | với xEZ
a)Giải phương trình [(2-x2)/2015]-1=[(1-x2)/2016]-[x2/2017]
b)giải phương trình nghiệm 1/x - 1/y +1/xy = 1/2
c) cho hai số a và b thoả mãn a lớn hơn hoặc 1 và b lớn hơn hoặc bằng 1 chứng minh [1/(1+a^2)]+[1/(1+b^2)] lớn hơn hoặc bằng 2/(1+ab)
a) tìm x để A lớn hơn hoặc bằng 0; A bé hơn 0 biết A=x.(x-2)
b) Tìm x để B lớn hơn 0;B bé hơn hoặc bằng 0 biết B=(x+2) / (3-x)
1.Cho C = 3-x/2 .Tìm x để :
a; C lớn hơn hoặc bằng 0 b; C bé hơn hoặc bằng 0 c; C= 2/3
2.Cho D= 5+x/-5 .Tìm x để:
a; D lớn hơn hoặc bằng 0 b; D bé hơn hoặc bằng 0 c; D= 3/7
3.Cho E= x+1/x-1 .Tìm x để:
a; E lớn hơn hoặc bằng 0 b; E= 3/4
4.Cho F= x-2/x+3 .Tìm x để:
a; F bé hơn hoặc bằng 0 b; F= -1/2
1.Cho C = 3-x/2 .Tìm x để :
a; C lớn hơn hoặc bằng 0 b; C bé hơn hoặc bằng 0 c; C= 2/3
2.Cho D= 5+x/-5 .Tìm x để:
a; D lớn hơn hoặc bằng 0 b; D bé hơn hoặc bằng 0 c; D= 3/7
3.Cho E= x+1/x-1 .Tìm x để:
a; E lớn hơn hoặc bằng 0 b; E= 3/4
4.Cho F= x-2/x+3 .Tìm x để:
a; F bé hơn hoặc bằng 0 b; F= -1/2
Ai làm mik k cho 3 lần nha